

Toronto University Library.

Hydro

PRESENTED BY

The University of Cambridge

through the Committee formed in

The Old Country

to aid in replacing the loss caused by the Disastrous Fire of February the 14th, 1890.

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

http://www.archive.org/details/geneeoucooune/udbashuoft

RESISTANCE OF THE AIR

TO THE

MOTION OF PROJECTILES.

Hondon: C. J. CLAY AND SONS, CAMBRIDGE UNIVERSITY PRESS WAREHOUSE, Ave Maria Lane.

Cambridge: DEIGHTON, BELL AND CO. Leipzig: F. A. BROCKHAUS.

A REVISED ACCOUNT

OF

THE EXPERIMENTS MADE WITH

THE BASHFORTH CHRONOGRAPH,

TO FIND

THE RESISTANCE OF THE AIR

TO THE

MOTION OF PROJECTILES,

WITH THE

APPLICATION OF THE RESULTS TO THE CALCULATION OF TRAJECTORIES

ACCORDING TO

J. BERNOULLI'S METHOD.

BY

FRANCIS BASHFORTH, B.D.

LATE PROFESSOR OF APPLIED MATHEMATICS TO THE ADVANCED CLASS OF R.A. OFFICERS, WOOLWICH; AND FORMERLY FELLOW OF ST JOHN'S COLLEGE, CAMBRIDGE.

CAMBRIDGE: AT THE UNIVERSITY PRESS.

1890

[All Rights reserved]

Cambridge :

PRINTED BY C. J. CLAY, M.A. AND SONS, AT THE UNIVERSITY PRESS.

6355 21101au

PREFACE.

WHEN my previous work on the Motion of Projectiles was published in 1873 the correct law of resistance of the air had been determined only for velocities between 900 and 1700 feet per second. The extensive experiments made at Shoeburyness in 1878, 1879 and 1880 with ogival-headed projectiles completed the law of resistance for velocities between 100 and 2800 feet per second, but it was not found possible to assign any simple expression for the law of resistance in terms of the velocity. The Newtonian and cubic laws may however be used, excepting perhaps a brief interval just below the velocity of sound.

The generous recognition of the practical value of my labours by the Marquis of Hartington, when Secretary of State for War in 1885, induced me to attempt to complete my labours by the calculation of tables of integrals for a resistance varying as the square of the velocity. So far as seemed necessary similar tables for the *cubic* law of resistance have been reprinted from my former work on the same subject.

The results of my experiments have been extensively used in government treatises on Ballistics since 1877 (114). Also Captain Ingalls has given an extended and careful explanation of my results and method of experimenting in his Text-Book on *Exterior Ballistics* prepared for the use of officers under instruction at the United States Artillery School, 1886. And

В.

PREFACE.

Major Wuich, Professor der Artillerielehre am k. k. höheren Artilleriekurse, Wien, has abridged my tables and presented them in a new form in his *Aeussere Ballistik*, 1886.

In order to furnish the reader with full information respecting the foundation on which my work rests, I have carefully revised all my original observations and given full particulars of the results finally adopted. This re-examination of every round has introduced triffing changes in the coefficients of resistance for both spherical and ogival-headed projectiles. I have therefore taken the trouble to recalculate my General Tables for both forms of projectile, in order to render my work consistent throughout. The whole has been adapted to the use of French as well as English measures.

The close agreement between calculated and experimental ranges and times of flight for high muzzle velocities and low elevations shows that my coefficients are well adapted for the best guns of the present day. But when projectiles are fired with high muzzle velocities at high elevations, the calculated ranges and times of flight are both generally less than those given in the range tables. This discrepancy, I have no doubt, is caused in a great measure by the vertical drift of the elongated projectile, which causes an increase of range and time of flight. In fact the explanation of lateral drift given by Magnus and others also accounts for a vertical drift which is really the origin of all drift.

Recently some rounds have been fired from a wire gun at high elevations with a very high muzzle velocity, commonly spoken of as the Jubilee Rounds. But it unfortunately happened that the wind was more or less favourable to a long range in these experiments. And a moderate steady wind at the surface of the earth would become a very violent wind at a height of two or three miles, which would produce a marked effect on the motion of an elongated projectile exposed to its action for 50 or 60 seconds. I have calculated a complete range table for the case where there is no wind to disturb the motion of the projectile. The statements and proceedings of some foreign writers on ballistics have rendered it incumbent on me to enter at some length into the history and progress of my work during the last twenty-six years. But I have confined these remarks chiefly to the conclusion of my work, so that the reader need not trouble himself unless he feels an interest in the matter.

In calculating trajectories it has of late become a common practice to reduce my coefficients, either arbitrarily, or so as to bring them into accord with those of Krupp. But I have not been able to find any satisfactory experimental authority for Krupp's tables issued in 1881. Certainly in the following year an "Annexe" (177), consisting of 37 rounds, was put forward to support a foregone conclusion, but these experiments from their nature were not to be depended upon (177), and in no single case was the time of flight recorded. The specimen of the experiments made to determine the resistance of the air for velocities higher than 700 m.s. (181) ought to establish the character of Meppen for ballistic experiments. In all cases the Krupp party were careful to follow and not to lead. An inspection of diagram (178) will show how carefully they followed my law of resistance, merely reducing my coefficients, as is shown by line 3 compared with line 1 or 2.

In 1872 Mayevski combined my results published in 1868 with a few of his own experiments, from which he professed to have obtained "résultats *russes* et anglais," which however coincided with my previously published results (169). Consequently, so far as Mayevski's experiments had any value, they entirely supported my previous conclusions.

The method of calculating trajectories published by Siacci requires all the three tables previously used by Niven for that purpose. Ingalls (173) has pointed out a grave defect in that Siacci has not found an analytical expression for a most important quantity, α or sec $\overline{\phi}$, but has merely given the empirical rule sec $\overline{\phi} = (\sec \phi)^{\frac{n-2}{n-1}}$. Turning to Niven's paper it will be found that the two values of this quantity required for distance and for time have been carefully determined, and still more so in a paper

PREFACE.

On certain Approximate Formulae for calculating the Trajectories of Shot, by Professor Adams (Nature, Jan. 16, 1890). It must be plain that arbitrary coefficients of resistance, and empirical quantities are quite inadmissible in any calculations made to test the results of careful experiment. Krupp, Mayevski and Siacci use tables of the same kind as mine (108) and (110).

The reader will find in the following work a very full account of every round from which coefficients of resistance have been obtained by me for both spherical and ogival-headed projectiles. In consequence of the Krupp scare, special experiments were made in 1887 to test my coefficients on a long range, when they were found to be quite satisfactory. Still no notice seems to have been taken of this fact, or of Captain May's remarks (151), by calculators of trajectories.

My coefficients of resistance for low velocities have been tested (122) by calculating a Range Table for the 6.3-inch Howitzer for elevations 5° to 35° with satisfactory results.

For high velocities I have used the Range Table for the 4-inch B.L. gun. The calculated ranges and times of flight for velocities 1900 to 960 f.s., and for elevations 1° to 4° (125), are quite satisfactory; and this conclusion is confirmed by the use of the General Tables (126) and (188). In the same manner the Range Table of Captain May, R.N., has been used (123), (124) and (189) to show the accuracy of my coefficients of resistance when the projectile moves nearly in the direction of its axis.

I therefore claim to have accomplished in a satisfactory manner all I undertook to do, namely, to find by experiment the law of resistance to spherical projectiles and also to elongated projectiles when they move approximately in the direction of their axes.

The tables and coefficients already given are sufficient for the calculation of trajectories of spherical projectiles and of elongated projectiles where there is no sensible drift. But

viii

in attempting to calculate the trajectories of elongated projectiles fired from rifled guns with high muzzle velocities and at considerable elevations, it will be well to recognise the truth of the statement of St-Robert-that the problem taken in all its generality presents great difficulties. I have endeavoured to explain the nature of the movement of such an elongated projectile, which is supposed to be projected with perfect steadiness from a rifled gun, according to the conclusions of St-Robert. Referring to (141) it is evident that shortly after the elongated projectile leaves the gun it must be raised up bodily by the resistance of the air, so as to cause it to move as if it had been fired at a somewhat higher elevation than it really was. I have given the calculated ranges and times of flight for elevations of 1° to 15° for the 4-inch B.L. gun (148). As the elevation increases above 4° it appears that the calculated ranges and times of flight fall short more and more of those quantities respectively given by experiment. Suppose we reduced the coefficients of resistance so as to obtain a calculated range equal to the experimental range for an elevation of 10°, we should find, as Captain May did (151), that these coefficients would not give a correct time of flight-and they would destroy the agreement actually obtained for low elevations. The reduction of the coefficients of resistance therefore cannot be the solution, of the difficulty, as is commonly supposed. Some correction is required which will increase both the calculated range and time of flight.

In (149) the calculated ranges of (148) are arranged in a different manner. I have found from the Range Table the elevation and time of flight corresponding to each calculated range. It is evident that the corrections for elevation at once give the correct ranges and very approximate corrections for the times of flight. These latter corrections would have been still more satisfactory if the decrease in density of the air corresponding to the height of the shot had been taken into account in the calculation of the trajectories (148). For the reason stated (146) this mode of correction will be only an approximation to the truth—but it will perhaps be found to be satisfactory. The law of the correction can only be obtained by the calculation of numerous trustworthy Range Tables, or by theoretical considerations.

I fear that the reader will meet with some repetitions in the following work, but it was impossible to avoid them entirely on account of the complicated nature of the various questions to be dealt with. Although it will not surprise me to find that what has been said produces little immediate effect, it will always be a satisfaction to me to have stated my case carefully and supported it by reference to, and specimens of, my early results and tables, in none of which have I found it necessary to introduce any important change.

The English Range Tables I have made use of appear to me surprising from their minute accuracy. I have derived much assistance from Captain Ingalls's excellent work on Exterior Ballistics, and the numerous references to that work will explain in what respect I am indebted to his labours.

MINTING VICARAGE, March, 1890.

CONTENTS.

	PAGE
CHAPTER I. (1) to (18). Introduction	1
CHAPTER II. (19) to (38). Description of the Chronograph, with an	
account of Experiments and their reduction	14
CHAPTER III. (39) to (81). Experiments with the Chronograph .	27
CHAPTER IV. (82) to (115). Description of the General Tables S_{ν}	
and T_{σ}	68
CHAPTER V. (116) to (135). Calculation of Trajectories of Pro-	
jectiles	87
CHAPTER VI. (136) to (153). The Movement of Elongated Projectiles	124
CHAPTER VII. (154) to (165). Proposed Laws of the Resistance of the	
Air to Elongated Projectiles	135
CHAPTER VIII. (166) to (192). Concluding Remarks	140

TABLE I. Coefficients for the Newtonian Law of the Resistance	of	\mathbf{the}	
Air to Spherical Projectiles			157
TABLE II. Approximate Law of the Resistance of the Air			
Motion of Spherical Projectiles			158
TABLE III. Coefficients for the Newtonian Law of Resistance	of	the	
Air to Ogival-headed Projectiles			ib.
TABLE IV. Approximate Law of the Resistance of the Air			
Motion of Ogival-headed Projectiles	•	•	159
TABLE V. Coefficients for the Newtonian Law of Resistance	of	the	
Air to Hemispherical-headed Projectiles	•	•	160
TABLE VI. Coefficients for the Newtonian Law of Resistance	of	the	
Air to Flat-headed Projectiles	•	•	ib.
TABLE VII. Values of $Q_{\phi} = \sec \phi \tan \phi + \log_e \tan \left(\frac{\pi}{4} + \frac{\phi}{2}\right)$.			161
TABLE VIII.Values of $Log Q_{\phi}$			163
TABLE IX. Values of (x) , (y) , (t) , and (v) for Newtonian Law			164
TABLE X. Values of $\{1000 \div v\}^2$			228

CONTENTS.

	PAGE
TABLE XI. Coefficients for the Cubic Law of the Resistance of the Air	
to Spherical Projectiles	235
TABLE XII. Coefficients for the Cubic Law of the Resistance of the	
Air to Ogival-headed Projectiles	236
TABLE XIII. Coefficients for the Cubic Law of the Resistance of the	
Air to Hemispherical-headed Projectiles	238
TABLE XIV. Coefficients for the Cubic Law of the Resistance of the	
Air to Flat-headed Projectiles	ib.
TABLE XV. Values of $P_{\phi} = 3 \tan \phi + \tan^3 \phi$, and of log P_{ϕ} .	239
TABLE XVI. Values of (x), (Y), (T), and (V) for the Cubic Law of	
Resistance	240
TABLE XVII. Values of $(1000 \div v)^3$	280
TABLE XVIII. Values of W_{ϕ} and $\log W_{\phi}$	283
TABLE XIX. Values of $(1000 \div v)^6$	284
TABLE XX. Log τ corresponding to temperatures and pressures of the	
Air, when the Air is $\frac{2}{3}$ rds saturated with moisture	286
TABLE XXI. Log τ for various heights, gravity and temperature being	
considered constant	288
TABLE XXII. Resistance of the Air to Spherical and to Ogival-headed	
Projectiles	289
TABLE XXIII. S _e for Spherical Projectiles .	290
TABLE XXIV. T_{*} for Spherical Projectiles	294
TABLE XXV. S, for Ogival-headed Projectiles .	298
TABLE XXVI. T. for Ogival-headed Projectiles	304

French Measures.

TABLE XXVII. Coefficients of the Resistance of	the	e Air	for	the	
Newtonian and Cubic Laws of Resistance to Sph	eric	al and	Ogi	val-	
headed Projectiles				•	3 10
TABLE XXVIII. Approximate Laws of the Resista	nce	of the	Air	to	
the Motion of Spherical Projectiles					311
TABLE XXIX. Approximate Laws of the Resistance	e of	the Ai	r to	the	
Motion of Ogival-headed Projectiles					ib.
TABLE XXX. St for Spherical Projectiles .					312
TABLE XXXI. To for Spherical Projectiles					313
TABLE XXXII. So for Ogival-headed Projectiles					314
TABLE XXXIII. The for Ogival-headed Projectiles					316

xii

CHAPTER I.

INTRODUCTION.

1. THE leading mathematicians of the last two centuries gave much attention to the subject of Ballistics. They seem to have accomplished all that was possible in such a case, in the absence of reliable experiments by which they could test their theories. Galileo made the first attempt to determine the theoretical path of a projectile acted on by gravity, but unresisted by the air, in his Scienze Nuove, 1638, and found it to be a Newton investigated the theoretical path of a proparabola. jectile, supposing the air to offer a resistance varying as the velocity. In 1718 Keill proposed his famous challenge to Continental mathematicians, "Invenire curvam, quam projectile de-"scribit in aëre, pro simplicissima suppositione gravitatis, atque "medii densitatis uniformis, resistentiæ vero in duplicata ratione "velocitatis¹." J. Bernoulli soon solved the problem, supposing the resistance to vary as any power of the velocity, but before publishing his solution, he called upon Keill to produce his own, telling him that if he did not do as he was requested, he should accept his silence "pro tacita confessione suæ imbecilitatis." As the required solution was not produced Bernoulli triumphed not over Keill only, but also over all his English friends, who might have been expected to help him if they had known how to do so. Bernoulli refers² to a solution received from Brook Taylor on the 6th of November, "styli veteris," under the form $(r^4 - 1 + 4nrr + 4ur^2)$. Hermann had also given a construction in his Phoronomia, p. 354, similar to his own.

¹ J. Bernoulli, Opera, 11. 396.

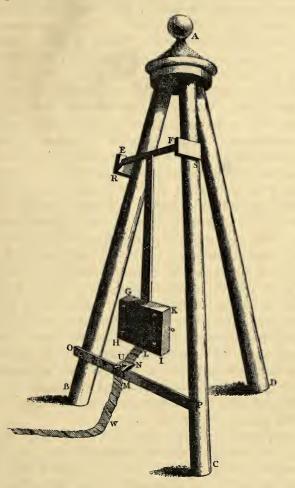
² Ib. p. 399.

1

в.

2. Le Seur and Jacquier remark in their edition of Newton's Principia (Book II., Prop. x., Prob. III.), that although Newton had omitted to consider the case of a medium resisting as the square of the velocity, they were unwilling that the solution of such an elegant problem should be absent from their commentaries. Having given Bernoulli's solution for any power of the velocity, they remark "ex quibus manifestum sit veræ trajectoriæ "descriptionem adeò perplexam esse, ut ex illa vix quidquam ad "usus philosophicos aut mechanicos accommodatum possit deduci." That is, it was impossible to integrate the expressions arrived at. But this solution is the one employed in this as well as in my former work. Euler also adopted Bernoulli's solution, and applied it to the case where the resistance varied as the square of the velocity. In this particular case the length of the arc of the trajectory can be found by integration. Euler divided the trajectory into small arcs, and, supposing the chord to be equal to the arc in length, by summation he found the coordinates of the path. This method of calculation was pursued by Grævenitz¹ (1764), Hugh Brown² (1777), and Otto³. But Legendre introduced a muchneeded correction by treating the arc of the trajectory as the arc of a circle, and projecting its *chord* upon the axes of x and y. Another method of correction proposed by Didion was to use the arc of a parabola instead of the arc of a circle⁴. Didion has given comparative examples of the use of these methods. Lambert, Tempelhof, Francois, Otto and others have made use of long series too complicated for practical use, although Otto has provided numerous auxiliary tables⁵. His other ballistic tables were only adapted for calculating the trajectories of shot fired at high elevations.

3. But there were no trustworthy means of comparing the results of theory and experiment until Robins, by the use of his ballistic pendulum and his whirling machine, made valuable attempts to discover the law of resistance of the air to the motion of small-arm bullets. He describes his ballistic pendulum as follows :- " A B C D represents the body of the machine "composed of the three poles B, C, D, spreading at bottom, and


¹ Translated by Rieffel, 1845.

² Translation of Euler.

^b Neue Bal. Tafeln, 1857.

³ Tafeln für den Bombenwurf. Translated by Rieffel, as Tables de Balistiques Générales pour le tir élevé, 1845. ⁴ Balistique, pp. 215, 216.

"joining together at the top A....On two of these poles towards "their tops are screwed on the sockets RS; and on these sockets

"the pendulum E F G H I K is hung by means of its cross piece "E F, which becomes its axis of suspension and on which it must "be made to vibrate with great freedom. The body of this pen-"dulum is made of iron, having a broad part at bottom which "cannot be seen in this scheme....The lower part of the pendulum "is covered with a thick piece of wood GKIH, which is fastened "to the iron by screws. Something lower than the bottom of "the pendulum there is a brace OP, joining the two poles to

1 - 2

INTRODUCTION.

"which the pendulum is suspended; and to this brace there is "fasten'd a contrivance MNU, made with two edges of steel "bearing on each other in the line UN, something in the manner "of a drawing-pen....There is fasten'd to the bottom of the "pendulum a narrow ribbon $L N^{1}$ " which is used to measure the recoil of the pendulum. Robins published his New Principles of Gunnery in 1742, in which he adopted a law of resistance varying approximately as the square of the velocity, but he insisted that there was a decided change in this law at or about the velocity of sound. This position was doubted till it was confirmed by recent experiments. In reply to some adverse criticisms on his work, several papers were read and illustrative experiments were exhibited by Robins before the Royal Society. He remarked, "But as I have, for some time past, made many experiments "myself on the ranges of bullets, and have collected all that I "could meet with made by other persons; it was necessary, in "order to examine the several hypotheses of resistance, which "some of these experiments suggested, that I should be enabled "to compute the motions of resisted bodies, not only when they "were resisted in the duplicate proportion of their velocity; but "likewise when the law of resistance was varied by other rules "not hitherto supposed by any writer. And, in these investi-"gations, I had the good fortune to discover some compendious "approximations, which were as accurate, as the nature of the "subject required, and were as easy in their application, as I "could well hope for in so perplexed and intricate a matter....But " first it is necessary to examine what is the real law of resistance "of bodies moving through the air.

"I have already mentioned, that in very great changes of "velocity, the resistance *does not accurately follow the duplicate* "*proportion* of the velocity. But how much this variation "amounts to, and how it is adapted to the different velocities of "the resisted body; it is not easy nicely to ascertain. However, "by comparing together a great number of experiments; I am "of opinion, that till, a more accurate theory of these changes "is compleated, the two following positions may be assumed "without any remarkable error²."

¹ New Principles of Gunnery, p. 83.

² Robins's Gunnery, 1. 180-183, and Hutton's ed., 180-183, 1805.

4. "*First*, that till the velocity of the projectile surpasses "that of 1100 feet in a second, the resistance may be esteemed "to be in the duplicate proportion of the velocity; and its mean "quantity may be taken to be nearly the same with that, I have "assigned in the former paper¹.

"Second, That if the velocity be greater than that of 11 or "1200 feet in a second, then the absolute quantity of that re-"sistance in these greater velocities will be near three times "as great, as it should be by a comparison with the smaller "velocities.—For instance, the resistance of a 12 pound shot, "moving with a velocity of 1700 feet in a second, instead of "144 lb. $\frac{1}{2}$, which I have assigned it in a former paper, will be "now three times that quantity, or 433 lb. $\frac{1}{2}$." And in a note Robins remarks, that "the velocity, at which the moving body "shifts its resistance, is nearly the same, with which sound is "propagated through the air."

5. On presenting to Robins the Copley Medal in recognition of the value of his work, Mr Folkes, President of the Royal Society, observed that, "It is from these experiments, and from "those others which Mr Robins is still preparing to exhibit, that "we may expect to see compleated the whole, and the true theory " of projectiles. What Galileo and Torricelli, who first demon-"strated the motions of these bodies in vacuo, knew to be still "wanting in their theories, will hereby be supplied: and these "particulars will at last become known, which they wished that "future observers would make diligent and careful experiment "about"." Previously, "writers, even those of the first class" have been of opinion "that in large shot of metal, whose weight "many thousand times surpasses that of the air, and whose force "is very great, in proportion to the surface wherewith they press "thereon, this opposition is scarce discernable, and as such may, "in all computations, concerning the ranges of great and weighty "bombs be very safely neglected "."

The choice of "two very considerable employments" having been offered to Robins, as a reward for his labours, he accepted the office of Engineer-General to the East-India Company "as "it was suitable to his genius, and where, he believed, he should

¹ Note by Hutton, "These suppositions are not nearly correct," 181.

² New Principles, 1. 182, Hutton's ed., pp. 180-182.

³ New Principles, I. p. xxx. ⁴ Ib. p. xxxi.

"be able to do real service, as not being liable to be hindered "through the suggestions of design or ignorance, which by their "boasting and importunity, often insinuating themselves into the "direction of publick affairs, frequently render abortive the best "concerted schemes¹." The Company settled upon him £500 a year during life, on condition that he continued in their service five years. He left England for India in 1749 and died at work 1751.

6. Euler at once published a translation of Robins's New Principles, and illustrated the work with a lengthy commentary (1745). He also contributed a paper on the same subject to the Memoires de l'Acad. de Berlin, 1753, in which he showed how theoretical trajectories might be calculated according to the solution of the problem by J. Bernoulli, but only for a resistance varying as the square of the velocity. Both Euler's paper and his commentaries on Robins's New Principles were translated and published in 1777 by Hugh Brown, who also carried out the calculation of seventeen species of trajectories according to Euler's example and instructions. The like had been done previously by Grævenitz in 1764, as already stated, but the calculations appear to have been made independently. The weight of the ballistic pendulum used by Robins was only 56 lbs. 3 oz.

7. At Woolwich, in the year 1775, in conjunction with some able officers of the Royal Regiment of Artillery and other ingenious gentlemen, was first instituted a course of experiments on fired gunpowder and cannon-balls, similar to the course carried on afterwards during the years 1783-5, 1787-9, 1791, &c. Hutton's account of the earlier experiments was printed in the Philosophical Transactions for 1778, and was honoured with the annual medal of the Royal Society. Hutton' remarks, "That part of Mr Robins's "book has always been much admired, which relates to the experi-"mental method of ascertaining the actual velocities of shot, and "in imitation of which, but on a large scale, those experiments "were made which were described in my paper. Experiments in "the manner of Mr Robins were generally repeated by his com-"mentators, and others, with universal satisfaction; the method "being so just in theory, so simple in practice, and altogether so "ingenious that it immediately gave the fullest conviction of its

¹ New Principles, p. xl.

"excellence, and the eminent abilities of the inventor. The use "which our author made of his invention, was to obtain the real "velocities of bullets experimentally, that he might compare them "with those which he had computed *a priori* from a new theory "of gunnery, which he had invented, in order to verify the prin-"ciples on which it was founded. The success was fully answerable "to his expectations, and left no doubt of the truth of his theory, "at least when applied to such pieces and bullets as he had used. "These however were but small, being only musket balls of about "an ounce weight."

8. Hutton endeavoured to supply the want of results of experiments with larger balls by using shot from 1 lb. to near 3 lbs., and finally 6 lbs. in weight. He employed the ballistic pendulum of Robins, as that was at that time the only practical method of ascertaining the velocities of military projectiles, except that practised by Count Rumford, who suspended the gun and measured its recoil. Hutton commenced his experiments with a pendulum weighing between 500 and 600 lbs. in 1783; it was increased to 1014 lbs. in 1788; in the following year to 1655 lbs. and at last to 2099 lbs. Full particulars of the rounds fired have been carefully given. For the determination of resistances at low velocities Hutton used Robins's whirling machine.

9. Hutton states that his experiments of 1787, 88, 89 and 91 "were chiefly instituted to obtain the effects of the air's resistance "to balls in their rapid flight through it. To determine the "resistance to the very high velocities, were employed balls of "three several sizes, viz. of 2 inches, 2.78 inches, and 3.55 inches "in diameter. These were discharged with various degrees of "velocity, from 300 feet to 2000 feet in a second of time; and they "were also made to strike the pendulum block at several different "distances from the guns, in order to obtain the quantity of velo-"city lost, in passing through those spaces of air; whence the "degrees of resistance were obtained, appropriate to the different "velocities. These series of resistances for the three sizes of "balls above-mentioned, have been obtained in a state remarkably "regular, not only each series in itself, but also in comparison "with each other; the terms in every one of them following a "certain uniform law, in respect of the velocity, being indeed "nearly as the $2\frac{1}{10}$ power of the velocity; and the terms of any "one series also, as compared with the corresponding terms of

7

INTRODUCTION.

"another, with the same velocity, these being in a constant pro-"portion to one another," viz. as the surfaces of the balls moved "nearly, or as the squares of their diameters, with about $\frac{1}{20}$ part "more in counting from the less ball to the greater, or $\frac{1}{20}$ part less "when comparing the greater ball to the less ¹." Finally, Hutton expresses the resistance of the air in pounds to a spherical shot *d* inches in diameter, moving with a velocity *vf.s.*², by

$(\cdot 000007565v^2 - \cdot 00175v) d^2.$

10. The proposal to introduce some changes into the English Artillery in 1815 determined the director of the Royal Academy and Dr Gregory, professor in the same establishment, to cause å ballistic pendulum to be constructed *three times greater* than that of Hutton, with which to experiment with shot of 24 lbs. The weight of the pendulum was 7408 lbs. Shot of 6, 9, 12 and 24 lbs. were fired into the wooden block of this ballistic pendulum, *from* guns of different lengths with various charges³. Other experiments⁴ were made in 1817, 18, at Woolwich to determine the influence of windage on the initial velocities of shot. The results obtained do not appear to have any permanent value.

11. General Piobert⁵ recalculated the experiments of Hutton and obtained a formula of resistance

$\rho = \pi R^2 \times 0.030586 (1 + 0.0023 V) V^2$.

12. General Didion has remarked that the experiments made by Hutton in England on small projectiles "incomplétement "formulées par ce savant observateur" had for a long time formed the sole base of ballistic applications. Piobert had succeeded in representing Hutton's results by a formula of two terms. The experiments made at Metz in 1839 and 1840, on projectiles of service calibres, had enabled him to obtain coefficients of resistance applicable to guns in actual use. The coefficients deduced from the experiments of Hutton and from those obtained at Metz did not agree. But recalculating Hutton's experiments by a perfectly suitable method, and introducing the same corrections, he found there was no sensible difference between them. Shot of 8, 12, and 24, weighing respectively 8:86 lbs., 13:38 lbs. and 26:47 lbs., and also a shell of 8:66 inches, weighing 50:71 lbs. were used

¹ Tracts, 111, pp. 216, 217. ² Ib. p. 232.

³ Ann. de Ch. et de Ph., v. p. 380. ⁴ Ib. 1x.

^b Mein, de l'Acad., 1836; and Didion, Lois, p. 22.

at Metz. The ballistic pendulum when filled with sand weighed about 6000 kilogrammes, or 13,228 lbs. All particulars of the experiments will be found in "Lois de la Résistance de l'Air sur les Projectiles." Par Is. Didion, Paris, 1857. The consideration of all the experiments made with the ballistic pendulum led to the adoption of the formula $\rho = 0.027\pi R^2 V^2 (1+0.0023 V)^1$ in French measures, or to $r = 0.0000028 d^2 v^2 (1+0.0007 v)$ in English measures. Didion observes that the pendulum of Robins, formed of a simple plank of wood, suspended by a single bar, was the most susceptible of all to torsion and disturbances, and gave the highest result; that the pendulum of Hutton better constructed and suspended by two bars, gave results higher with the 3 lb. and 6 lb. balls than with the 1 lb. ball; and that these were higher than those of the experiments made at Metz with a very massive pendulum suspended by four bars, and very rigid.

From these considerations Didion concludes that the divergences observed proceeded from the imperfection of the apparatus, and that the lower results obtained with the apparatus

Velo-		Hutton		lion	Bashforth
city		1791		40	1868
f.s. 100 200 300 400 500	lbs. 0·2 0·7 1·6 2·9 4·7 6·9	Correction required	lbs. 0'1 0'5 1'2 2'3 3'8 5'7 8'2	Correction required	lbs.
700 800 900 1000	9.8 13.3 17.5 22.6 28.6	lbs. - 4.7 - 5.0 - 3.1	8·2 11·2 14·8 19·0 24·0	lbs. - 2.0 - 1.4 + 1.5	12·8 17·6 25·5
1200	35°3	- 1.9	29.7	+ 3.7	33'4
1300	42°7	- 2.1	36.2	+ 4.4	40'6
1400	50°7	- 2.2	43.5	+ 5.0	48'5
1500	59°2	- 2.5	51.7	+ 5.0	56'7
1600	67 [.] 9	- 2.6	60.8	+4.5	65°3
1700	76 [.] 8	- 2.7	70.9	+3.2	74°1
1800	85 [.] 5	- 2.6	82.0	+0.9	82°9
1900	94 [.] 1	- 1.3	94.2	-1.4	92°8
2000	102 [.] 4	+ 1.9	107.5	-3.2	104°3

¹ Lois, &c., p. 78.

the most recent and most improved, and which are moreover the most numerous and obtained with *service* projectiles, ought to be regarded as the most exact.

13. The foregoing Table shows the resistance of the air to the motion of a spherical ball 2 inches in diameter, (1) as given by Hutton; (2) as calculated by Didion's formula; and (3) as calculated by the help of my own coefficients, 1868.

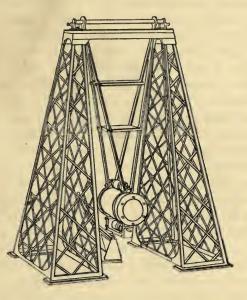
From the above table it appears that Didion was quite right when he declared that Hutton's results were too high. But he over-corrected them, and gave a formula which produced results that were too low. In fact for velocities 1200 to 1700 feet per second, Hutton's results were nearer the truth than Didion's.

14. Hutton expressly denied that there was any "shifting of "the resistance of the air" at or about the velocity of sound, such as Robins had pointed out¹; while Didion gave a formula for the resistance of the air of the form

$$A V^{2} (1 + BV) = A V^{3} \left(\frac{1}{V} + B\right),$$

so that the coefficient of V^{3} increases as V decreases; but my experiments show that there is a sudden decrease in the value of this coefficient in the neighbourhood of the velocity of sound.

It gives me great pleasure to exhibit the valuable work done by these early experimenters, who worked together in the best possible spirit—each ready to recognise the value of his predecessor's work. Hutton brought out a new edition of Robins's *New Principles*, &c., while Didion recalculated Hutton's experiments.


15. Finally a monster ballistic pendulum was constructed for the English Government in 1855 by Messrs Armstrong and Co. It was first set up at Shoeburyness, afterwards removed to Woolwich, and finally dismantled without ever having been used in any course of experiments. It therefore gave no results. But still an elaborate model of this useless instrument was made for the Great Exhibition of 1862, which was reported to have cost £800. I do not know what was the weight of the pendulumblock in this case. The figure represents this ballistic pendulum, which was about twenty feet in height.

16. It was perhaps natural that each succeeding experimenter should be anxious to use shot of increased weight which involved

¹ Hutton's edition of Robins, p. 181.

INTRODUCTION.

the employment of heavier pendulum blocks. But on reviewing the work that has been done, it appears probable that the ex-

perimenters who followed Robins would have succeeded better if they had expended all their care and ingenuity upon experiments on a small scale. For Robins noticed a change in the law of resistance which was disputed or passed over in silence by succeeding experimenters with the ballistic pendulum. Now it is impossible to experiment satisfactorily with small-arm bullets by the help of galvanic chronographs, because they would generally pass between the strings of the screens without cutting them. or they would be rendered unsteady if they touched the threads of the screen. But with the great precision of the small arms now made there would be no difficulty in carrying out experiments with a *light* ballistic pendulum. I find that care was taken by the old experimenters to screen the block of the ballistic pendulum from the blast of the gun, but I have not noticed that any attempt was made to prevent the blast of air, which accompanies a shot, from acting upon the pendulum. It would be well therefore to place a thin paper screen just in front of the block of the pendulum, the bull's eye being marked on the paper in front of the point to be hit.

17. When I commenced experimenting in 1864 with a view to determine the resistance of the air to the motion of projectiles, the best results previously obtained were those derived from the use of the ballistic pendulum. The electro-ballistic instruments of Vignotti, Navez, Leurs, and others of the same type, were liable to frequent errors, and so were not adapted for use in determining the resistance of the air to projectiles. The want of an instrument capable of measuring the times occupied by a shot in passing over a succession of equal spaces was felt long ago, for in 1843 Col. Konstantinoff employed M. Bréguet, of Paris, to construct for him a chronograph. "Le problème était celui-ci: Disposer "un instrument qui pùt indiquer et conserver trente ou quarante "observations successives, faites dans des espaces de temps tres "rapprochés, d'un phénomène se passant plus ou moins loin de "l'endroit où se trouve placé l'instrument d'observation 1." The construction of the instrument was commenced in June, 1843, and completed on the 29th of May, 1844°. This instrument is described and figured by Du Moncel². Hence arose a warm discussion between Wheatstone and Bréguet* of which Moigno⁵ has given a long account. It is difficult to say what the dispute was all about, as it does not appear that results of any value were ever obtained by either party, for in 1856 Morin remarked that the problem had not even then been resolved in a way completely satisfactory. Du Moncel remarks, "Ce chronographe "fut, en 1845, l'object d'une discussion assez animée entre MM. "Wheatstone et Bréguet, de laquelle il est résulté que la première "idée des chronoscopes et chronographes électriques appartenait "bien à M. Wheatstone, mais que c'était au capitaine Konstanti-"noff que revenait l'idée d'enrigistrer la vitesse des projectiles aux "différents points de leur trajectoire, et à M. Bréguet que devait "être attribuée la disposition de l'instrument pour résoudre le "problème posé par M. Konstantinoff⁶."

18. Another chronograph, the invention of Captain Schultz, was exhibited at Paris in 1867, which was intended to register several records for each round. We were informed that "Captain "Schultz, in fact, finds that he can observe and register time to

¹ Moigno, Télégraphie, 1849, p. 95.

⁵ Télégraphie, pp. 88-113.

² Ib. p. 96.

- 4 Comptes-Rendus, 1845.
- 6 Applications, 11. p. 337.

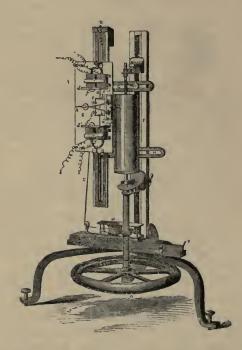
³ Applications, 11. p. 337, 1856.

" 110000000 of a second¹!" Either the Ordnance Select Committee or the Committee on Explosives were not slow in securing such a promising instrument. But when they had got it they could not make it work, for although I inquired frequently, I could not learn that they had obtained any results fit to produce. The most elementary knowledge of the subject ought to have warned them that there were three objections to the satisfactory working of this chronoscope, any one of which would prove fatal : (1) the badly contrived system of screens, (2) the use of the tuning-fork to divide the second of time, and (3) the use of the spark as the recording agent. The Schultz chronoscope was early used in the United States, but from Lt.-Col. Benet's² account, it appears to have only been applied to measure *initial* velocities. In this respect he speaks favourably of the instrument. But Captain Ingalls³ has explained how the case stands now. He remarks, "the only "chronograph which can successfully compete with Bashforth's as "a means for studying the resistance of the air was invented by "Captain Schultz of the French Artillery, in 1864, the year in "which Professor Bashforth constructed his first instrument. " Since that time it has been much improved by M. Marcel-Deprez, "Lt.-Colonel Sébert of the French Marine Artillery, and Lieu-"tenant A. H. Russell of the U. S. Ordnance; and all the objec-"tionable features mentioned by the Bashforth committee have "been obviated. As thus modified it is strikingly like Professor "Bashforth's chronograph, and the same screens, batteries, arrange-"ments of circuits, and methods of reduction of observations can "be used in both." Still we have no results obtained by the use of this "modified" instrument, which was brought forward at Woolwich in its crude state in opposition to mine 20 years ago with little credit to its patrons.

¹ Practical Mechanic's Journal, Oct. 1867, p. 195.

² Electro-Ballistic Machines, 1866. ³ Ballistic Machines, 1885, p. 29.

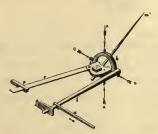
CHAPTER II.


DESCRIPTION OF THE CHRONOGRAPH, WITH AN ACCOUNT OF EXPERIMENTS AND THEIR REDUCTION.

On the institution of the Advanced Class of Royal 19. Artillery Officers at Woolwich in 1864 the Professorship of Applied Mathematics was offered to me by the Council of Military Education. I the more readily accepted that office because I saw my way to the satisfactory solution of the problem of the resistance of the air to the motion of projectiles. It was also a part of my duty to act as referee to the Ordnance Select Committee, at that time the scientific advisers of the Government. The Committee were possessors of the monster ballistic pendulum of 1855, which was useless, and electro-ballistic instruments of the type of Navez, which were unreliable, because they afforded no means of testing the accuracy of their results. I therefore submitted to the committee my plans for the construction of a chronograph adapted to record the times occupied by any shot in passing over a succession of equal spaces, for, if these records were found consistent with each other, or capable of being made so by allowable corrections, then the results must be trustworthy, supposing the law of resistance of the air not to be subject to any sudden change. This supposition has been found to be correct, except perhaps for velocities 1000-1100 f. s., where there is a rapid change in the law of resistance. But the Ordnance Select Committee did not require any new chronograph for their purposes, as they were at that time quite satisfied with the Navez chronoscope they possessed. It was perhaps fortunate that, for this reason, I was obliged to keep the construction of the new instrument in my own hands, for thus I was able to introduce improvements in any part which was found to be defective in the original design.

20. After a due consideration of all circumstances of the case, it appeared that the following conditions must be satisfied by a chronograph to be worthy of perfect confidence :---

- (1) The time to be measured by a clock going uniformly.
- (2) The instrument to be capable of measuring the times occupied by a cannon-ball in passing over at least nine successive equal spaces.
- (3) The instrument to be capable of measuring the longest known time of flight of a shot or shell.
- (4) Every beat of the clock to be recorded by the interruption of the same galvanic current, and under precisely the same conditions.
- (5) The time of passing each screen to be recorded by the momentary *interruption* of a second galvanic current, and under precisely *the same conditions*.
- (6) Provision to be made for keeping the strings or wires of the screens in *a uniform state of tension*, notwithstanding the force of the wind and the blast accompanying the ball.


The following is a description of the chronograph as 21. constructed, and of various useful appendages. Fig. 3 gives a general view of the chronograph. A is a fly-wheel capable of revolving about a vertical axis, and carrying with it the cylinder K, which is covered with prepared paper for the reception of the clock and screen records. The length of the cylinder is 12 or 14 inches, and the diameter 4 inches. B is a toothed-wheel which gears with the wheelwork M so as to allow the string CD to be slowly unwrapped from its drum. The other end of CD being attached to the platform S allows it to descend slowly along the slide L, about $\frac{1}{4}$ inch for each revolution of the cylinder. E, E' are electro-magnets; d, d' are frames supporting the keepers; and f, f' are the ends of the springs which act against the attraction of the electro-magnets. When the current is interrupted in one circuit, as E, the magnetism of the electro-magnet is destroyed, the spring f pulls back the keeper, which turns about a hinge at d, and by means of the arm a, gives a blow to the lever b. Thus the marker m is made to depart suddenly from the uniform spiral it was describing. When the current is restored the keeper is attracted, and thus the marker m is brought back, which continnes to trace its spiral as if nothing had happened. E' is connected with the clock, and its marker m' records the seconds.

E is connected with the screens, and records the passage of the shot through the screens. By measuring up the marks made by m, m' the exact velocity of the shot can be calculated at all points of its course. The slide L is fixed parallel to F and the cylinder K by the brackets G, H. Y is a screw for drawing back the wheelwork M, and J a stop to regulate the distance between M and B. The depression of the lever h raises the two springs s, which act as levers, and bring the diamond points m, m' down upon the paper. When an experiment is to be made, care is taken to see that the two currents are complete. The fly-wheel A is set in motion by hand, so as to make about three revolutions in two seconds. The markers m, m' are brought down upon the paper, so that in about five seconds the experiment is completed, and the instrument is ready for another.

22. Fig. 4 gives a view of one of the markers, showing the way in which it is moved. The depression of the lever h (Fig. 3), raises p, and thus the lever s, which is formed of watch-spring wire, brings down m' to the paper, and keeps it gently in contact. This motion takes place within the circle k, about an axis CD. a' is an arm connected with the electro-magnet. When the magnetism in E' is destroyed, a' begins to move away, and when it has moved a short distance it strikes the lever b' a sudden blow which carries it as far as the hole in the stop c' will allow it to move. The lever b' is rigidly connected with the circle k, which is capable of moving about an axis AB. This motion is communicated to m', which describes a very short arc of a circle about a point in AB. The arrangement is so made that when either of the markers m, m' is making a record, it has a motion which may be resolved partly in direction of the motion of the paper under it, and partly in a direction perpendicular to this. When these adjustments are properly made the records to be read off will be nearly at right angles to the spirals.

Fig. 4.

The pendulum of a half-seconds clock strikes once each doublebeat a very light spring, and so interrupts the galvanic current in E' once a second.

The following diagram, Fig. 5, shows four screen records in the upper line, and one second record in the lower line, when the markers are properly adjusted.

Fig. 5.

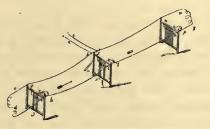
23. Figs. 6 and 7 give the details of the screens. Fig. 6 represents a piece of board 1 inch thick and 6 or 7 inches wide,

B.

2

and rather longer than the width of the screen to be formed. Transverse grooves are cut at equal distances, something less than the diameter of the shot, as shown in the diagram. Staples

Fig. 6.

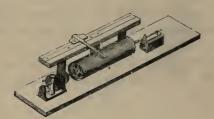

Fig. 7.

of hard brass spring-wire (No. 14 or 15), are fixed with their prongs in the continuation of the grooves. Pieces of sheet copper A are provided, having two elliptical holes, the distance of whose centres equals the distance of the grooves. The pieces of copper A are used to connect each wire staple, as C, with its neighbour on each side. Thus, Fig. 7 a, c, e, g, &c., represent these copper connections put in their places and holding down the wire springs, which, when free, are in contact with the tops of the holes; but, when properly weighted, they rest on the lower edge of the holes. Thus the copper c forms a connexion between the staples b and d; the copper e joins d and f, and so on. A galvanic current will therefore take the following course, whether the springs be weighted or unweighted: copper a, brass b, copper c, brass d, copper e, brass f, copper g, &c. The current will only be interrupted when one or more threads have been cut and the corresponding spring is flying from the bottom to the top of its hole. About $\frac{1}{50}$ th of a second is required for the complete registration of such an interruption, the spring traversing about

half an inch. The shelf B is placed for the weights to rest against, partly to prevent them from being carried forward by the shot, but chiefly to prevent the untwisting of the threads which support the weights. The weights used were about 2 lbs. each, and the strength of the sewing cotton for supporting them was equal to a stress of about 3 lbs., which was sufficient to withstand a tolerably strong wind. As the weights were equal the threads were kept equally stretched.

24. The arrangement of the screens for an experiment is shown in Fig. 8. The wires for conveying the galvanic current

Fig. 8.


are, like the common telegraph wire, carried on posts. abc is a continuous piece of wire; but there are interruptions between e and h, between i and l, between m and p, &c., in order to make the galvanic current circulate through the screens. The course of the galvanic current is a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t. The ends a, t, are connected with the instrument and battery. The shot, being fired through the screens, in passing cuts one or more threads at each screen, so that corresponding to the instant at which the shot passes each screen there is an interruption of the galvanic current, and a simultaneous record on the paper cylinder.

25. When the cylinder is filled with spirals, that is after five or six rounds, it is transferred to the instrument, Fig. 9, where a is a circle divided into 300 equal parts, and the division is carried to 3000 by the help of a vernier. A small T-square, having a fine edge at b, moves along a brass straight-edge L, adjusted so as to be parallel to the axis of the cylinder. The mark b is carefully placed opposite each record on the paper by means of a tangent screw (not shown in the figure), and the

19

vernier is read. It would have been more convenient if the circle had been divided into 500 rather than 300 equal parts.

Fig. 9.

The clock goes on breaking the galvanic circuit every swing of the pendulum, whether the marker m' be in contact with the paper or not—consequently, whatever be the loss of time in the action of the marker, we may fairly suppose it to be constant. But if the current had been circulating through the screens for several minutes, or even seconds, without interruption before the shot was fired, the records at the first and the following screens would not have been made under the *same* conditions.

26. To guard against any error from this source, an ordinary self-acting spring contact breaker was introduced into the screen circuit. The raising of a spring lever interrupts the main current of galvanism through the screens. The insertion of a pin to keep up the lever, re-opens a passage for the screen galvanic current through the contact breaker; this may be made also to ring a bell in the instrument room, to give notice that all things are ready for the experiment. The fly-wheel is then put in motion, the signal to fire is given; the pulling of the lanyard withdraws the pin and so restores the main current, and then fires the gun.

27. The construction of the chronograph was commenced in August, 1864; it was ready for trial in June, 1865. It received its first *partial* trial before the Committee on Gun Cotton in July 1865, in conjunction with Major Navez's Electro Ballistic Pendulum. The instruments gave a nearly constant difference of 20 f.s. in velocities of about 1500 f.s. The chronograph remained at the proof butts from July to November, 1865, when it was taken down to Plumstead Marshes and placed in a splinterproof, where it remained about a fortnight. Its powers to withstand damp and dust were well tested in this manner.

28. In carrying out a series of experiments it is advisable to provide convenient means for *interrupting* the *clock* galvanic current when the markers are raised. It is also desirable to have the means of *diverting* the *screen* galvanic current from its electromagnet to another adapted to ring a small bell in the instrument room, for then it is known what is going on on the range, if the circuit be not broken. These three operations of raising the markers, breaking the clock current and diverting the screen current might be effected by one motion, if the stage e'd'de (Fig. 3) between the fixed electro-magnets E, E' was made to rotate about its back edge dd'. Then, when preparing to fire a round it would only be necessary to press down the platform d'e to make everything ready for a new experiment.

29. As it is quite impossible to drive the cylinder which receives the records with a sufficiently uniform and known angular velocity, it was decided to place the axis in a vertical position in the manner shown in Fig. 3, and spin the instrument by hand. When the records of a successful experiment are read off, they show slight irregularities, which must be corrected so as to make the readings yield regular differences. The scale of time found in this way is a decreasing scale. By interpolation the places are found where the records for every tenth of a second would fall. On comparing the screen records, it is now possible to read off the time each screen was passed to the tenth of a second by the scale of time, and any remaining fraction of one-tenth of a second is found by proportional parts, on the supposition that the angular velocity of the cylinder is uniform for each tenth of a second. At first the time of passing each screen was expressed to four places of decimals of a second, which seemed quite sufficient for all practical purposes, but to secure satisfactory results it was found necessary to go to five places of decimals of a second. When this had been done, further extremely small corrections were required to make the calculated times of passing the screens difference properly. I will give round 148; hollow ogival headed shot, d = 4.92 in.; w = 23.84 lbs. as it was printed in the Report, Feb. 18691; carried to four places of decimals, and also in the form in which it appears after the recent revision. The following

¹ Reports, &c. 1865-1870, p. 56.

statement gives the original readings and the corrections applied to them.

Clock

Screens

2 19 [.] 27 3 43 [.] 55 4 67 [.] 78 - °0 5 91 [.] 89+ °0	$\begin{array}{rl} n^{n} \cdot \text{cor}^{d}, \text{readings} & \Delta^{1} \\ 0 &= & 19^{\circ}270 \\ 0 &= & 43^{\circ}550 \\ 222 &= & 67^{\circ}758 \\ 222 &= & 67^{\circ}758 \\ 424^{\circ}136 \\ 04 &= & 91^{\circ}894 \\ 94^{\circ} + & 24^{\circ}065 \\ 09 &= & 115^{\circ}959 \\ 94^{\circ} + & 23^{\circ}995 \\ 06^{\circ} = & 139^{\circ}954 \\ 05^{\circ} + & 23^{\circ}995 \\ 0 &= & 163^{\circ}880 \\ \end{array}$	- 72 3 - 71 4 - 70 5 - 69 6 7 8	$\begin{array}{llllllllllllllllllllllllllllllllllll$
---	--	--	--

30. By interpolation the clock readings were found for every tenth of a second. By the help of proportional parts the screen readings were converted into seconds, as follows

	I. (1	868)1			II. (1889)						
Screen	ť	Δt	$\Delta^2 \ell$	Screen	t.	Δt	$\Delta^2 \mathcal{E}$	$\Delta^3 \ell$			
1 2 3 4 5 6 7 8 9 10	4 4492 4 5580 4 6693 4 7829 4 8989 5 0174 5 1382 5 2615 5 3873 5 5155	+ 1088 + 1113 + 1136 + 1160 + 1185 + 1208 + 1233 + 1258 + 1282	+25 +23 +24 +25 +23 +25 +25 +25 +25 +24	1 2 3 4 5 6 7 8 9 10	4" 44917 4 55802 4 66926 4 78289 4 89892 5 01736 5 13822 5 26152 5 38728 5 51552	+ 11363 + 11603 + 11844 + 12086 + 12330	+ 239 + 239 + 240 + 241 + 242 + 244 + 246 + 248	0 + 1 + 1 + 1 + 2 + 2 + 2			

31. We must now show how the velocity v and the retarding force f of the air upon the shot may be deduced from the results of experiments so expressed.

By Finite differences we have

or

 $\Delta t_s = t_{s+i} - t_s,$ $t_{s+i} = t_s + \Delta t_s,$

4 2 .

$$c_{s+2l} - c_{s+l} + \Delta c_{s+l} - c_s + \Delta \Delta c_s + \Delta c_s,$$

$$t_{s+3t} = t_s + 3\Delta t_s + 3\Delta^2 t_s + \Delta^3 t_s,$$

&c. &c.

¹ Ib. p. 30.

And generally

$$\begin{split} t_{s+nl} &= t_s + n\Delta t_s + \frac{n \cdot n - 1}{1 \cdot 2} \ \Delta^2 t_s + \frac{n \cdot n - 1 \cdot n - 2}{1 \cdot 2 \cdot 3} \ \Delta^3 t_s + \&c. \\ &= t_s + n \ \{\Delta t_s - \frac{1}{2} \ \Delta^2 t_s + \frac{1}{3} \ \Delta^3 t_s - \frac{1}{4} \ \Delta^4 t_s + \&c.\} \\ &+ n^2 \ \{\frac{1}{2} \ \Delta^2 t_s - \frac{1}{2} \ \Delta^3 t_s + \frac{11}{24} \ \Delta^4 t_s - \frac{10}{24} \ \Delta^5 t_s + \frac{137}{360} \ \Delta^6 t_s + \&c.\} + \&c. \end{split}$$

Expanding t_{s+nl} by Taylor's Theorem, we have

$$t_{s+nl} = t_s + \frac{dt_s}{ds} \frac{nl}{1} + \frac{d^2t_s}{ds^2} \frac{n^2l^2}{1 \cdot 2} + \frac{d^3t_s}{ds^3} \frac{n^3l^3}{1 \cdot 2 \cdot 3} + \&c.,$$

and equating the two coefficients of n and of n^2 in the two expansions of t_{s+n} , we have

$$\begin{split} l \frac{dt_s}{ds} &= \Delta t_s - \frac{1}{2} \Delta^2 t_s + \frac{1}{3} \Delta^3 t_s - \frac{1}{4} \Delta^4 t_s + \frac{1}{5} \Delta^5 t_s - \&c., \\ \frac{d^2 t_s}{ds^2} &= \Delta^2 t_s - \Delta^3 t_s + \frac{11}{12} \Delta^4 t_s - \frac{10}{12} \Delta^5 t_s + \frac{137}{180} \Delta^6 t_s + \&c. \\ &= (\Delta^2 t_{s-l} + \Delta^3 t_{s-l}) - (\Delta^3 t_{s-l} + \Delta^4 t_{s-l}) + \frac{11}{12} (\Delta^4 t_{s-l} + \Delta^5 t_{s-l}) \\ &- \frac{10}{12} (\Delta^5 t_{s-l} + \Delta^6 t_{s-l}) + \frac{137}{180} (\Delta^6 t_{s-l} + \Delta^7 t_{s-l}) - \&c. \\ &= \Delta^3 t_{s-l} - \frac{1}{12} \Delta^4 t_{s-l} + \frac{1}{12} \Delta^5 t_{s-l} - \frac{13}{180} \Delta^6 t_{s-l} - \&c. \\ &= \Delta^2 t_{s-l} - \frac{1}{12} \Delta^4 t_{s-2} + \frac{1}{30} \Delta^6 t_{s-3l} - \&c. \end{split}$$

and

72

32. Also by expanding t_{t-n} in the same way by Finite Differences and by Taylor's Theorem, it may be shown that

$$l\frac{dt_s}{ds} = \Delta t_{s-l} + \frac{1}{2}\Delta^2 t_{s-2l} + \frac{1}{3}\Delta^3 t_{s-3l} + \frac{1}{4}\Delta^4 t_{s-4l} + \&c.$$
$$l^2 \frac{d^2 t_s}{ds^2} = \Delta^2 t_{s-2l} + \Delta^3 t_{s-3l} + \frac{11}{12}\Delta^4 t_{s-4l} + \frac{5}{6}\Delta^5 t_{s-5l} + \&c.$$

and

33. Let s denote the distance from some fixed point to a screen, l the distance between successive screens, and t_{s-2l} , t_{s-l} , t_s , t_{s+1} , t_{s+2l} ... the observed times of the shot passing successive screens. Then if v_s denote the velocity of the shot, and f_s the retarding force of the air upon the shot at the time t_s ,

$$\begin{split} h_s &= \frac{ds}{dt_s} = \frac{l}{\Delta t_s - \frac{1}{2}\Delta^2 t_s + \frac{1}{3}\Delta^3 t_s - \frac{1}{4}\Delta^4 t_s + \frac{1}{5}\Delta^5 t_s - \&c., \\ &= \frac{l}{\Delta t_{s-1} + \frac{1}{2}\Delta^2 t_{s-21} + \frac{1}{3}\Delta^5 t_{s-31} + \frac{1}{4}\Delta^4 t_{s-4} + \frac{1}{5}\Delta^5 t_{s-31} + \&c., \end{split}$$

also

2)

and

$$\begin{split} \dot{f_s} &= \frac{d^2 s}{dt_s^2} = -\frac{d^2 t_s}{ds^2} \left(\frac{ds}{dt_s}\right)^3 \\ &= -\frac{v_s^3}{l^2} (\Delta^2 t_{s-l} - \frac{1}{12} \Delta^4 t_{s-2} + \frac{1}{90} \Delta^6 t_{s-3} - \&c.). \end{split}$$

The following scheme explains how these differences are to be taken

34. Let v_s denote the velocity of the shot at the 5th screen, f_s the retarding force at the same point, and l = 150 feet, in round 148, then we have

$$\begin{split} v_{5} &= \frac{150}{\Delta t_{*} - \frac{1}{2}\Delta^{2}t_{*} + \frac{1}{3}\Delta^{3}t_{*} - \&c.} \\ &= \frac{150}{\cdot 11844 - \frac{1}{2}\cdot 00242 + \frac{1}{3}\cdot 00002 - \&c.} = 1279\cdot5 \text{ f. s.} \\ f_{5} &= -\frac{v_{5}^{-3}}{l^{2}} \left(\Delta^{2}t_{*-i} - \frac{1}{12}\Delta^{4}t_{*-2i} + \&c.\right) \\ &= -\frac{v_{5}^{-3}}{(150)^{2}} \left(\cdot 00241\right) = -2bv_{5}^{-3}. \end{split}$$

and

But when this experiment was made the weight of a cubic foot of air was 534.55 grains, and the standard weight 534.22 grains.

Hence
$$K_{v_5} = 2b (1000)^3 \frac{w}{d^2} \frac{534 \cdot 22}{534 \cdot 55}$$

= $\frac{\cdot 00241}{(150)^2} (1000)^3 \frac{23 \cdot 84}{(4 \cdot 92)^2} \frac{534 \cdot 22}{534 \cdot 55} = 105 \cdot 4.$

In the same way the corresponding values of v and K_{v} may be found at each screen, as follows

Screen	V	Δv	$\Delta^{s} v$	K_v	7
2 3 4 56 78 9	13003	- 27.8 - 26.8 - 25.8	+0.9	104*5 104*5 105*0 105*4 105*9 106*7 107*6 108*5	0 + ·5 + ·4 + ·5 + ·9 + ·9

35. Thus round 148 gives the following values of K_{\star}

<i>t</i> <i>f.s.</i> 1360	K _v	U <u>f.s.</u>		U 	K _v
1300 1350 1340 1330 1320 1310	$ \begin{array}{c} 104.5 \\ 104.5 \\ 104.5 \\ 104.5 \\ 104.6 \\ + \cdot 1 \\ 104.7 \\ + \cdot 1 \\ 104.9 \\ + \cdot 2 \end{array} $	1300 1290 1280 1270 1260 1250	$\begin{array}{c} 105^{\cdot 1} \\ 105^{\cdot 2} + \cdot 1 \\ 105^{\cdot 2} + \cdot 2 \\ 105^{\cdot 4} + \cdot 2 \\ 105^{\cdot 6} + \cdot 2 \\ 105^{\cdot 8} + \cdot 2 \\ 106^{\cdot 0} + \cdot 3 \end{array}$	1240 1230 1220 1210 1200 1190	$ \begin{array}{c} 100 \ 3 + \cdot 4 \\ 106 \ 7 + \cdot 3 \\ 107 \ 0 + \cdot 4 \\ 107 \ 4 + \cdot 4 \\ 107 \ 8 + \cdot 4 \\ 108 \ 2 + \cdot 4 \end{array} $

Each of these values of K_* will be found under its proper velocity v in the Summary.

36. The Chronograph when tried with 10 equidistant screens in November and December 1865, in Plumstead Marshes, proved successful. Eighteen rounds in all were fired through ten screens 120 feet apart from the Armstrong 12 Pr. B. L. gun. The diameter of the shot was 3 inches, and its weight about 12 lbs., but no particular care was taken to weigh the shot, as the only object of the experiment was simply to test the working of the instrument. Of the eighteen rounds, two were fired by mistake, while the cylinder was stationary. One shot carried away a screen, and another cut the conducting wire at the second screen. But I was able to give a good account of eleven out of the eighteen rounds fired to test the Chronograph.

37. The following is a statement of the results of this trial experiment, where d denotes the diameter in inches and w the weight of the shot in pounds, and l the distance in feet between successive screens.

Round	Screen I.	Screen 2.	Screen 3.	Screen 4.	Screen 5.	Screen 6.	Screen 7.	Screen 8.	Screen 9.	Screen 10.
I 2 5	0°0 0°0	•10640 •10450 •10461	*21409 *20981 *21025	·32297 ·31609 ·31694	'43293 '42349 '42472	*54386 *53215 *53365	•65564 •64220 •64381	·76816 ·75376 ·75530	·88131 ·86694 ·86826	·99498 ·98184
7 10 11	0.0 0.0	•10335 •10540 •10467	•20872 •21164 •21096	•31567 •31891 •31877	*42386 *42732 *42800	*53305 *53694 *53855	•64310 •64786 •65032	•75398 •76008 •76321	·86577 ·87360	•97866 •98842 —
13 15 16	0.0 0.0 0.0	·10505 ·10420 ·10495	'21110 '21010 '21120	·31830 ·31750 ·31875	·42670 ·42620 ·42760	•53630 •53600 •53775	•64710 •64670 •64917	·75910 ·75810 ·76182	•87228 •87567	•98660 •99072
17 18	0'0	·10506 ·10572	•21147 •21239	•31924 •32004	•42838 •42872	•53890 •53850	•65080 •64947	·76409 ·76173	•87877 •87538	*99484 *99052
Means	0.0	•10490	'21107	.31847	•42708	•53688	•64783	.75994	•87311	.98832

Report dated December 18, 1865. d = 3 in., w = 12 lbs., l = 120 feet.

38. Thus it appears that the average of the mean times of passing each screen was

Screen	dist. feet	t	Δt	$\Delta^{2}t$
I	0	o″•0000	1049	
2	I 20	·1049	1062	13
3	240	°2111	1074	I 2
4	360	.3182	1074	12
56	480	'427 I	1098	I 2
6	600	•5369		II
7	720	•6478	1109 1121	12
7 8	840	.7599		II
9	960	·8731	1132	20
IO	1080	·9883	1152	

As $\Delta^2 t$ was here found to be nearly constant it was assumed that the space s described in the time t were connected by the equation

$$t = as + bs^2$$
, which gives $v = \frac{ds}{dt} = \frac{1}{a + 2bs}$,
and $f = \frac{d^3s}{dt^3} = -\frac{2bv}{(a + 2bs)^2} = -2bv^3$,

or the resistance appeared to vary approximately as the cube of the velocity for this short range.

CHAPTER III.

EXPERIMENTS WITH THE CHRONOGRAPH.

39. In the next place, some experiments were authorised to be made at Shoeburyness with elongated projectiles having hemispherical, hemispheroidal, and ogival heads struck with radii of one and of two diameters of the shot. These experiments were carried out on Sept. 25, 26, and 27, 1866. The firing was often interrupted by passing ships, and on the 28th not a single experimental round could be safely fired. As only 44, out of the 70 shots provided were fired, and there was never an opportunity to complete the experiment, the results were not quite so satisfactory as they should have been. But all the hollow ogival headed shot of one and of two diameters were fired alternately, and this constitutes one of the best experiments of the kind ever performed. In order to avoid any confusion in numbering the rounds between the parties on the range and in the observing room it was usual to note at both places the exact time of firing every round. This arrangement enables me to state that the rounds 23-31 were fired in 44 min. 50 sec., and these nine rounds gave 89 good records. The following is a statement of the particulars of each round¹. The results of these experiments were applied to calculate tables of remaining velocities for each form of shot used. The screens were 150 feet apart.

¹ Reports, &c. 1865-1870, p. 10, and Transactions of the Royal Society, 1868, p. 417.

40. Report dated Oct. 23, 1866.

P											
No. of Round		1 Sc.	2 Screen.	3 Screen.	4 Screen.	5 Screen.	6 Screen.	7 Screen.	8 Screen.	9 Screen.	10 Screen.
	}		ł				1	1			
	lbs.			Hemis	pherica	l-heade	ed Proje	ectiles.			
I	07 011	o‴•0	•12639	*25467	·38481		•65055	.78609	·92337	1.06236	1*20303
5	39.310	0.0	·12669	*25487	•38456	·00000 ·51578	13330	·26810 ·78289	'40440 '91882	·54220	.68150
13 34	39.330	0.0	12009	25407	38490	51578	*64855 *64962	*78450	'92 1 10	1.05636	1.19223
43	39.340	0'0	12596	25361	.38297	.51406		78151	.91791	1.05612	1.09616
				Hemis	pheroid	al-head	ed Proj	ectiles.			
2	38.72	0.0	12662	.25444	.38352	.51392	.64570	.77892	.91364	*	*
7	38.69	0.0	°12721	*25582	38583	:51724	.65005	.78426	·91987	1.05688	*
35 40	38.69	0.0	12677 12640	·25482 ·25416	·38415 ·38329	·51478 ·51380	·64673 ·64570	·78002 ·77900	91467 91370	1.02020	1.18813
	52						tiles (or				1 1 5 -
2	39.56	0.0	12910	25997	*39261		•	80115	.94087		
3 36	39.56	0.0	12642	25430	·38360	51430	•64640	.77990	.91478	1.02100	*
41	39.26	0.0	12605			.51220		.77647	91057		1.18267
			Solid (Ogival-l	ncaded	Project	iles (tw	o diam	eters).		
4	38.56	0.0	12655	•25461	•38414	.51510	•64746	.78119	°91626	1.05264	1.13030
37	38.48	0.0	12756	25652	•38683	.51844	.65130	*	*	*	*
42	38.47	0.0	.12302	•24768	37397	.20188	.63140	•76252	•89523	1.02922	1.16238
			Hollow	' Ogival	l-heade	d Proje	ctiles (c	one diai	meter).		
14 16	21°78 21°81	0.0	.10010	20276	30795	.41565	•52585	•63855	75374	87140	99150
10	21.81	0.0	°09850 °09930	19926 20114	·30247 ·30552	*40824 *41244	·51662 ·52189	·62762 ·63386	74124 74834	·85748 ·86532	*97634 *98479
20	21.83	0.0	.00000	20072	•30505	'41190	52120	63290	.74699	86346	198230
22	21.81	0.0	·09892	*20019	*30382	•40983	.51825	62912	.74248	.85837	97683
24	21.83	0.0	.09953	20157	*30613	°41322	•52285	.63503	74977	·86708	•98697
26 28	21.81 21.83	0.0	°09975 °09900	*20205 *20048	*30687	'41418 '41088	*52395 *51981	°63615 °63123	75075 74514	·86772 ·86154	*98703 *98043
30	21.81	0.0	·09947	20043	'30444 '30600	41306	52265	.63477	74942	.86660	'98631
32	21.81	0.0	.10379	•20989	.31833	42915	.54240	65814	77644	·89738	1.02105
			Hollow	Ogival	-headed	l Projec	ctiles (tv	vo dian	neters).		
15	21.92	0.0	'09934	20123	•30562	41247	52175	•63344	74753	.86402	*
19	21.94	0.0	·09829	.19913	30257	.40866	51745	•62899	*	*	*
21 23	21.89	0.0	°09951 °09857	20143 19949	·30575 ·30277	·41246 ·40842	°52155 °51645	·63301 ·62687	74683 73969	·86300	.98121
25	21.09	0.0	09937	20072	30453	40042	51905	·62976	73909	85808	.97569
27	21.95	0.0	.09906	*20045	.30416	41018	.51850	62911	.74201	85720	.97468
29	21.97	0.0	.09890	*20025	·30401	'41014	.21861	.62939	74246	.85780	97539
3!	21.01	0.0	'09928 '10171	°20075 °20569	·30448 ·31200	·41053 ·42070	·51895	·62978	·74305 ·76169	*85878 *88045	*97698
33	21.94	00	101/1	20309	31200	42070	53105	•64550	10109	00045	
				1			1				

Report dated Oct. 23, 1886.

	<i>v</i> =	1160 <i>f.s</i> .	1150 f. s.	1140 <i>f. s</i> .	1130 <i>f.s</i> .	1120 f.s.	1110 <i>f.s</i> .	1100 f.s.
Round 1 5 13 34 43 Mean	$K_{v} = K_{v} = K_{v$	* 120'0 127'0	145 ^{.8} * 121 ^{.2} 128 ^{.6} 137 ^{.0} <u>133^{.2}</u>	144 ^{.2} * 122 ^{.4} 130 ^{.3} 138 ^{.0} <u>133^{.7}</u>	142.7 * 123.5 131.9 139.0 	141 ^{.2} * 124 ^{.7} 133 ^{.6} 140 ^{.0} <u>134^{.9}</u>	139.5 118.7 125.9 135.4 141.1 132.1	137 ^{.9} 118 ^{.7} 127 ^{.1} 137 ^{.1} * <u>130^{.2}</u>

41. Hemispherical Head.

42. Hemispheroidal Head.

•	v=	1160 <i>f. s</i> .	1150 <i>f.s</i> .	1140 <i> f. s</i> .	1130 <i>f.s</i> .	1120 <i>f.s</i> .
Round 2 7 35 40 Mean	$K_{v} = K_{v} = K_{v$	100.5	105.3 109.1 101.6 107.6 105.9	109'4 109'1 103'0 108'3 107'5	113.1 109.1 104.3 108.8 108.8	105.7 108.8 107.3

43. Ogival Head (one diameter) Solid.

	<i>z</i> ′=	1160 f.s.	1150 <i>f.s</i> .	1140 <i>f. s</i> .	1130 <i>f.s</i> .	1120 <i>f. s</i> .	1110 f.s.
Round 3 36 41 Mean	$K_v = K_v $	111.2	* 111.3 109.8 110.6	141.0 111.3 107.2 119.8	141.0 111.3 104.8 119.0	141.0 109.9 103.6 118.2	141.0 * 103.6 122.3

44. Ogival Head (two diameters) Solid.

	v=	1160 <i>f. s</i> .	1150 <i>f.s</i> .	1140 <i>f.s</i> .	1130 <i>f.s</i> .
Round 4 37 42	$K_{v} = K_{v} = K_{v} =$	113'0 105'2 124'1	110 .7 102.0 123.6	108.7 98.6 123.0	106.7 * 122.5
Mean	$K_v =$	<u>114°1</u>	I 12'I	 I 10. I	114.6

Report dated Oct. 23, 1886.

	<u>ت</u> ر=	1460 <i>f. s</i> .	1440 <i>f.s</i> .	1420 <i>f.s</i> .	1400 <i>f.s</i> .	1380 <i>f.s</i> .	1360 <i>f.s.</i>	1340 f.s.	1320 <i>f.s</i> .	1300 f.s.
Round										
14	$K_v =$	*	110.0	110.4	110.0	109.7	109.7	109.6	109.3	108.7
16	$K_v =$	109.5	111.0	113.2	114.7	1150	112.1	112.1	112.1	112.1
18	$K_v =$	*	111.0	111.0	111.3	111.1	110.8	110.2	I IO.5	109.9
20	$K_{n} =$	*	113.0	110.8	108.0	107:3	105.7	105.3	105.0	104.7
22	$K_{v} =$	103.8	104.4	105.0	105.9	107 3	102.1	109.3	1050	111.7
24	$K_v =$	*	111.0	111.5	111.2	111.8	112.1	112.3	112.6	112.0
26	$K_v =$	*	110.4	109.6	108.8	108.0	107.1	106.3	105.3	104.4
28	$K_v =$	108.0	108.9	109.0	109.3	109.4	109.4	109.4	109.4	109.4
- 30	$K_v =$	111.0	111.0	111.0	111.0	111.0	111.0	111.0	111.0	111.0
20	1-				TOOLE	10216		****	108.2	11010
32	$K_v =$	*	*	*	102.2	103.6	104.9	106.4	103*2	110.5
Mean	$K_{v} =$	108.2	110.3	110.5	109.4	109.4	109.4	109.5	109.7	109.8
1										

45. Ogival Head (one diameter) Hollow.

46. Ogival Head (two diameters) Hollow.

	v=	1460 <i>f.s</i> .	1440 <i>f. s</i> .	1420 f.s.	1400 f.s.	1380 <i>f.s</i> .	1360 <i>f.s</i> .	1340 <i> f. s</i> .	1320 f.s.
Round									
15	$K_{v} =$	*	109.5	108.2	107.7	106.0	106.4	106.0	*
21	$K_v =$	*	105.2	105.4	105.1	104.9	104.6	104.3	104.0
23	$K_v =$	104.2	104.2	104.2	105.0	102.3	105.6	105.9	*
25 27 29	$\begin{array}{l} K_v = \\ K_v = \\ K_v = \end{array}$	101·8 102·6 106·5	101·8 102·3 105·5	101·8 102·0 104·5	101·8 101·7 103·7	101·8 101·4 102·8	101·8 101·3 102·0	101.8 * 101.4	101·8 * 100·7
31 33	$\begin{array}{c} K_v = \\ K_v = \end{array}$	99°9 *	101.6 *	103·1 103·6	104·5 105·2	105.7 107.0	106.7 108.7	107.7 110.1	108·3 111·4
Mean	$K_v =$	103.0	104.4	104.2	104.3	104.2	104.6	105.3	105.2

47. Afterwards an extended series of experiments was authorised to be made at Shoeburyness by the use of my chronograph, which were carried out in 1867, 68. The M. L. guns employed were 3, 5, 7 and 9 inches in calibre; and the projectiles were 2.92, 4.92, 6.92 and 8.92 inches in diameter, their heads being all struck with a radius of one diameter and a half. Their lengths were generally two and a half times the calibres of the guns from which they were fired. Both hollow and solid or cored shot were provided for each gun. The charge of powder was varied in order

to obtain as great a variation in the velocity of the shot as possible. The maximum velocity of 1700 f. s. was at that time considered ample for all practical purposes. The firing was continued till five good rounds were obtained with each charge. The 3, 7 and 9-inch guns were service guns, and to complete the series a bronze gun was bored out to 5 inches and rifled, but it only gave a few good rounds with low charges before it failed. Afterwards a condemned Armstrong B. L. gun was converted into a 5-inch M. L. rifled gun. This imparted a remarkable degree of steadiness to the projectiles, as was shown by the lowness of its coefficients of resistance, and by the great number of records it gave for the rounds fired.

48. Further experiments were carried out with elongated projectiles, in 1878, 9 and again in 1880. The particulars of these three sets of experiments made with ogival-headed shot are here given together, in order to combine all the values of K obtained for each velocity. Rounds 1—240 were fired on thirteen days from Oct. 7, 1867 to May 21, 1868, which were reported July 23, 1868¹ (84/B/1941). Rounds 412—482 were fired on fourteen days from Sept. 13, 1878 to March 12, 1879 which were reported July 8, 1879² (84/B/2853); and rounds 483—502 on three days March 8—10, 1880, which were reported Aug. 13, 1880³ (84/B/2909).

49. Experiments were also carried out by firing both hollow and solid spherical projectiles from the 3, 5, 7 and 9-inch guns on twelve days from May 6 to Nov. 5, 1868. The Report of these experiments was dated, Feb. 13, 1869⁴. The screens were 150 feet apart, except in the few cases noted.

50. The coefficients of resistance were originally reduced for a density of the air such that one cubic foot of air weighed 530.6 grains. But since 1879 the standard density of air has been taken to be that which corresponds to a temperature of 62° Fah., and a height of 30 inches of the Barometer, which give the weight of a cubic foot of dry air 534.22 grains. All the English coefficients have now been adapted to this density.

51. As these experiments are now concluded I have carefully revised all the rounds already published, expressing time to *five* places of decimals of a second—not because time can be really

¹ Reports, &c. 1865-1870, pp. 18-54, and pp. 123-152.

² Report, &c., Part'II., 1879. ³ Final Report, 1880.

⁴ Reports, &c. 1865-1870, pp. 55-122.

measured with such extreme accuracy—but in order to obtain from each round consistent values of v and K_v . Thus the reader has placed before him the evidence for the values of K finally adopted. When each group of values of K for a given velocity consisted of numerous experimental determinations of K, I have endeavoured to include all *irregular* values of K as far as possible in taking the means. But in the few cases where I have felt obliged to exclude any experimental value of K, it has been marked (*).

52. In each case I have been careful to specify here not the date on which any experiment was made—but the date of the Report of my results to Government, which would always be found to be a day or two prior to the date of the official stamp affixed to all documents of this kind when they are received. As the dates of each round have already been given in published Reports, they need not be here repeated, for in all cases of question of priority, the date required is the day when the statement in its definite form left the hands of the experimenter. For so long as any experimenter's results remain in his own possession they are liable to be corrected or modified by him as circumstances may seem to require.

With a view to afford the Secretary of State full and reliable information of the precise value of the results obtained, the Committee, who superintended the experiments with my chronograph, 1867, 8, suggested that their report should be "referred to "mathematicians of eminence, such as the Astronomer Royal, "Professor Adams, Director of the Cambridge Observatory, or "Professor Stokes, Secretary to the Royal Society¹." After considerable delay the referees sent in a most valuable report, in which they reviewed most of the recent chronoscopes and modes of conducting ballistic experiments. This report was printed² in full, but at the time no further notice was taken of it. Shortly afterwards I retired from Her Majesty's Service, but some years after this, being invited to lend my chronograph and complete my experiments, I readily agreed to do so.

¹ Reports, &c. 1870, p. 26.

² Ib. pp. 155-161, and Captain Ingalls's Ballistic Machines, p. 25.

Report dated July 23, 1868.

Times at which the Projectiles passed the Screens.

53. (1) 3-inch Gun. Solid Ogival-headed Projectiles. w = 12 lbs.; d = 2.92 inches.

No. of Round		2 Screen.	3 Screen.	4 Screen.	5 Screen.	6 Screen.	7 Screen.	8 Screen.	9 Screen.	10 Screen.
I	o″•o	12457	*25125	•38005	.51098	·64405	.77927	·91665	1.05620	1.19793
2	0.0	12244	•24659	.37241	•49986	·62890	.75949	·89160	1.02221	1.16031
3	0.0	12335	*2 4866	*37597	.20530	•63665	·77001	.90536	1.04262	1.18100
4	0.0	'12244	•24645	•37208	·49938	·62841	*75923	.89190	1.02648	*
5	0.0	12279	*24702	*37279	.20012	·62920	*	*	*	*
49	0.0	14400	•28909	*43528	•58258	.73100	*88054	1.03150	1.18508	1.33288
50	0.0	14570	'29244	*44032	.58943	•73986	·89168	1.04492	1.19925	1.32603
52	0.0	.14356	•28847	*43470	•58221	.73097	·88095	1.03513	1.18449	*
53	0.0	•14657	*29447	*44375	*59445	•74665	*90022	1.02235	1.51180	*
54	0.0	14502	*29124	•43867	.58733	.73725	·88847	1.04104	*	*
55	0.0	19273	•38696	•58267	•77985	•97850	1.12865	*	*	*
56	0.0	19347	*38832	.58456	.78221	.98129	*	*	*	*
57	0.0	.19139	•38406	•57804	.77336	.97005	1.19814	1.36267	1.26868	*
59	0.0	•18913	.37983	.57213	•76607	•96168	1.12000	*	*	*
60	0.0	.19072	*38294	•57656	.77167	·96831	1.16621	*	*	*
135	0.0	19074	.38299	.57677	.77210	*	*	*	*	*
137	0.0	•18694	.37528	.26206	.75632	.94910	1.14344	1.33932	1.23692	*
138	0.0	19341	•38840	•58497	•78312	•98285	1.18410	**	*	*
	1									

Hollow Ogival-headed Projectiles. w = 9 lbs.; d = 2.92 inches. 54.

3

1	1					1	1	1		
6	0.0	.11395	.23077	.35052	*47329	•59920	*	*	*	*
7	0.0	10900	22005	33325	44870	.56649	•68669	·80935	·93450	*
9	0.0	.11318	22877	•34680	.46730	.59030	*	:*	*	*
IO	0.0	.11193	·22634	*34325	·46269	.58469	.70928	·83649	*	*
11	0.0	·10996	.22243	'33744	45502	.57520	·69801	*	*	*
12	0.0	11051	*22339	.33872	.45657	.57701	.70008	·82580	*	*
124	0.0	11114	*22470	.34070	·45916	•58009	.70350	·82940	.95779	1.08862
126	0.0	·10865	·21978	*33337	'4494I	.56790	·68885	·81228	·93822	1.06621
							1.0			
13	0.0	·13064	•26382	*39959	.53799	•67905	.82279	*	*	*
14	0.0	13340	·26865	·40581	•54493	·68604	.82916	·97430	*	*
15	0.0	13244	·26731	.40478	•54496	68790	*	*	*	*
16	0.0	.13032	•26267	•39693	.23318	·67146	.81181	·95426	1.00885	1.24249
17	0.0	•12765	*25754	•38970	.52416	*660 95	.80010	·94164	*	*
18	0.0	12958	•26119	*39484	.23055	·66834	·80822	·95020	*	*
19	0.0	12421	*25088	.38001	.21160	*	*	*	*	*
26	0.0	•16784	.33701	.20721	.67935	.85254	1.02209	*	*	*
27	0.0	.17203	*34500	•51895	•69391	·86990	*	*	*	*
28	0.0	•16971	.34072	.51304	•68668	·86165	1.03296	1.51263	1.39468	*
29	0.0	.12109	'34351	.51728	.69243	•86900	*	*	*	*
30	0.0	.12130	·34391	.51787	.69323	*87005	*	*	*	*
31	0.0	.12182	*34505	.21922	•69538	.87255	*	*	*	*
32	0.0	.12112	·34351	.21213	.69205	·86830	1.04200	*	*	*
	1									

В.

55. Hollow Ogival-headed Projectiles. w = 6 lbs.; d = 2.92 inches.

No. of Round	1 Sc.	2 Screen.	3 Screen.	4 Screen.	5 Screen.	6 Screen.	7 Screen.	8 Screen.	9 Screen.	10 Screen.
	o"•o	100.67								
39		°09467	19281	*29443	*39954	.20812		*	*	*
40	0.0	09415	19169	29259	•39683	•50440	•61531	•72958	*84724	•96833
41	0.0	·09567	19458	•29676	•40225	.21108	.62327	.73885	*85784	*
43	0.0	·09795	19931	*30408	'41227	-52388	.63892	75741	*87936	1.00429
44	0.0	.09300	•18929	•28892	•39.193	•49837	•60828	·72171	•83870	·95930
127	0.0	·09902	·20169	.30797	.41784	.23130	•64837	.76909		*
129	0.0	.09863	20054	.30573	*	55-50	*	*		
130	0.0	.09733	.19809	.30228	•40990	.52096	.63547	.75345	.87492	•99990
131	0.0	10219	20779	.31682	·42931	*54529	•66480	.78787	·91454	*
132	0.0	.09830	19992	.30492	41334	\$2520	.64050	.75924	.88143	1.00209
133	0.0	.09855	.20078	.30669	41628	.52956	.64654	.76722	•89160	1.01968
134	0.0	·10249	•20883	.31902	*43307	•55099	.67280	.79852	*	*
* 3-4		10245	20005	31902	43307	33099	0,200	19032		
33	0.0	.11131	•22678	.34643	.47029	.59840	*	*	*	*
34	0.0	11298	.22889	.34780	•46978	*	*	*	*	*
35	0.0	.11027	.22396	-34107	.46159	•58551	.71282	·84351	.97757	1.11499
36	0.0	.11075	.22503	.34289	•46438	•58955	.71843	.85103	*	*
37	0.0	.10979	22325	.34038	.46118	•58566	.71383	*	*	*
38	0.0	11181	*22709	.34587	.46817	.59402	.72344	.85645	.99308	1.13335
3-			/-/	575-7	4001/	3340-	7-374	-JoyJ	33300	
20	0.0	.14753	.29677	.44773	.60043	.75489	.91114	1.06921	1.55015	1.39089
21	0.0	14718	29620	.44706	.59977	.75434	.91078	1.06010	*	*
23	0.0	14240	.28724	.43456	58439	.73676	.89170	*	*	*
24	0.0	.14572	29374	.44406	.59668	.75160	.90883	1.06839	1.53031	1.39462
25	0.0	14554	29318	.44294	.59483	.74887	.90507	1.06345	1.22404	1.38688
					571-5		1	- 515		

56. (2) 5-inch Gun. Cored Ogival-headed Projectiles. w = 47.68 lbs.; d = 4.92 inches.

164 165 166 167 168	0.0 0.0 0.0	°10995 °11234 °11320 °11194 °11401	·22112 ·22573 ·22745 ·22500 ·22910	·33352 ·34019 ·34275 ·33919 ·34528	*44716 *45574 *45910 *45451 *46255	•56205 •57240 •57650 •57097 •58092	•67820 •69019 •69496 •68858 •70039	·79561 ·80912 ·81449 ·80735 ·82097	·91428 ·92920 ·93510 ·92728 ·94266	1.03421 1.05044 1.05680 1.04838 1.06547
139 140 141 142 143	0.0 0.0 0.0	•12284 •12201 •12192 •12175 •12216	·24682 ·24519 ·24511 ·24462 ·24566	·37194 ·36957 ·36959 ·36863 ·37049	*49820 *49518 *49537 *49380 *49664	•62561 •62204 •62247 •62013 •62410	•75418 •75016 •75090 •74762 •75286	·88391 ·87955 ·88066 ·87627 ·88292	1.01480 1.01021 1.01176 1.00609 1.01428	1°14685 1°14214 1°14422 1°13710 1°14694
169 170 171 172 173	0.0 0.0 0.0	*13336 *13124 *13040 *12979 *13082	*26776 *26371 *26189 *26075 *26275	•40324 •39741 •39447 •39289 •39580	•53984 •53234 •52814 •52621 •52998	*67759 *66850 *66291 *66071 *66529	•81651 •80589 •79879 •79639 •80174	·95661 ·94450 ·93579 ·93326 ·93933	1.09790 1.08432 1.07392 1.07132 1.07806	• 1·22534 1·21319 1·21057 1·21793
159 160 161 162 163	0.0	*14329 *14541 *14629 *14762 *14520	·28743 ·29168 ·29339 ·29625 ·29111	·43242 ·43881 ·44131 ·44590 ·43773	*57826 *58680 *59004 *59658 *58506	·72495 ·73565 ·73958 ·74830 ·73310	·87248 ·88536 ·88994 ·90107 ·88185	1 02085 1 03593 1 04112 1 05490 1 03131	1°17005 1°18736 1°19311 1°20980 1°18149	1*32007 1*33965 1*34592 * 1*33239

• >	

57		H	[o]]	low	0	giva	l-hea	ded	l Pro	iec	ti
----	--	---	------	-----	---	------	-------	-----	-------	-----	----

iles. w = 23.84 lbs.; d = 4.92 inches.

No. of Round	1 Sc.	2 Screen.	3 Screen.	4 Screen.	5 Screen.	6 Screen.	7 Screen.	8 Screen.	9 Screen.	10 Screen.		
144	0".0	.08737	.17643	*26718	*35962	*	*	*	*	*		
145	0.0	·08586	.17377	•26374	*35578	·44991	•54614	•64449	.74498	•84763		
146	0.0	·08542	17284	*26227	*35372	*44720	.54272	.64028	.73988	*84152		
147	0.0	·08694	17594	•26701	*36015	'45537	*55267	.65206	*75354	85711		
154	0.0	.09137	•18491	28063	*37854	•47865	•58097	·68552	•79234	.90147		
155	0.0,	.00160	·18504	*28042	•37784	*47740	*57920	.68334	•78992	.89904		
156	0.0	.00133	18455	*27974	•37698	*47635	•57793	.68180	.78805	•89677		
157	0.0	.09239	18654	.28257	•38060	•48074	.28310	•68779	*79491	.90456		
158	0.0	.09160	•18533	.58151	.37926	.47950	.28192	•68663	*79356	·90276		
							10	0	0			
148	0.0	.10882	*22009	*33372	·44975	•56819	.68905	.81235	.93811	1.06632		
149	0.0	•10793	*21842	.33149	*44715	•56540	·68624	.80967	.93568	1.06426		
150	0.0	.10932	*22099	*33493	.42118	.26975	•69065	.81389	*93949	1.06242		
151	0.0	.10933	*22101	*33507	*45154	.57045	•69183	*	*	*		
152	0.0	•10899	*22041	*33427	*45058	•56935	•69058	•81427	•94042	1.06903		
153	0.0	10729	•21691	*32886	*44314	*55975	•67869	*79997	·92359	1.04922		
61	0.0	.11780	•23863	.36251	•48946	.61950	.75265					
62	0.0	11556	23003	*35535	.47958	01950	13205					
63	0.0	11550	23401	35587	47958		1		1			
64	0.0	11673	23596	35767	4/950	.60845	.73748	.86893	1.00280	1.13909		
66	0.0	11617	23390	35551	.47870	.60426	13/40	*86262	.99551	1.13002		
67	0.0	11661	23567	35715	.48103	*60731	.73600	.86711	1.00067	1.13672		
01	00		23307	557-5	40105	00/5-	1,3000		/			
174	0.0	.12618	25463	.38533	.51826	.65341	.79076	.93030	1.07202	1.51295		
175	0.0	.13780	27780	.41990	.56402	.71011	.85813	1.00800	*	*		
176	0.0	13321	·26840	.40557	.54471	.68581	·82886	.97385	*	*		
177	0.0	16960	.34051	.51273	.68627	-86115	1.03740	1.21506	*	*		
178	0.0	.16103	•32342	.48719	*65236	.81895	·98698	1.12647	*	*		
		59 (9) 7-incl	h Cun	Corod	Orivo	l-heade	d Projo	otilos			
		58. (3	-inci	n oun.	Corec	eogiva	1-meaue	u rioje	conco.			

w = 123.125 lbs.; d = 6.92 inches.

97 98 99 100 101	0.0 0.0 0.0	·11185 ·11054 ·10916 ·10940 ·11467	·22465 ·22205 ·21922 ·21974 ·23039	·33841 ·33455 ·33019 ·33104 ·34718	·45314 ·44806 ·44207 ·44332 ·46506	·56885 ·56260 ·55487 ·55660 ·58405	•68555 •67819 •66860 •67091 *	·80326 ·79485 ·78328 ·78627 *	·92200 ·91260 ·89893 ·90270 *	* 1:03146 1:01557 1:02022 *
86	0.0	•12305	·24691	.37160	•49714	·62355	*	*	*	*
87	0.0	·12232	*24564	•36996	·49528	·62160	•74892	·87724	1.00622	1.13695
88	0.0	12380	•24863	·37451	.20146	·62949	•75860	·88878	1.02005	1.12530
89	0.0	12331	24758	.37281	*	*	*	*	*	*
91	0.0	12591	25275	*38049	.20910	•63856	•76885	·89995	1.03182	1.16424
92	0.0	°I2330	*24739	*37227	·49794	*	+	*	*	*
93	0.0	12515	25157	.37924	.20814	·63825	•76955	·90202	1.03263	1.12032
103	0.0	.12018	•30102	°45251	•60464	.75740	·91078	1.06422	1.51930	1.32424
104	0.0	.12138	.30335	°45590	·60902	*	*	*	*	*
105	0.0	14941	·29960	45055	•60224	.75465	·90776	1.00120	1.51604	*
			S			1			1	

35

3-2

59. Hollow Ogival-headed Projectiles. w = 61.156 lbs.; d = 6.92 inches.

			,		5					
No. of Round	ı Sc.	2 Screen.	3 Screen.	4 Screen.	5 Screen.	6 Screen.	7 Screen.	8 Screen.	9 Screen.	10 Screen.
113 114 115 116 117	0 ^{″′} °O 0°O 0°O 0°O	-09199 -09303 -09147 -09333 -09193	·18565 ·18782 ·18474 ·18834 ·18552	·28101 ·28440 ·27984 ·28503 ·28079	·37810 ·38280 ·37680 ·38339 ·37776	•47694 •48305 •47565 •48341 •47646	*57754 *58518 * *58508 *57692	·67991 ·68921 * ·68839 *	•78406 •79516 * •79333 *	* * * * * * * * * *
94 96 110 111 112	0°0 0°0 0°0	·11213 ·10988 ·11100 ·11138 ·11192	·22604 ·22187 ·22421 ·22486 ·22573	·34177 ·33599 ·33966 ·34046 ·34149	*45936 *45226 *45738 *45820 *45924	·57885 ·57068 ·57740 ·57810 ·57900	·70028 ·69125 * ·70018 ·70079	•82368 * • 82446 •82463	*94907 * * * * *	1.07646 * * 1.07854
121 122	0.0	•17071 •17178	·34313 ·34522	·51725 ·52031	·69306 ·69704	·87055 ·87540	1.04971 1.05539	* 1°23701	* 1°42026	*
	1	60. (4	e) 9-inc v	h Gun. v = 250	Corea lbs.; d	l Ogiva = 8 [.] 92	l-heade inches.	d Proje	ectiles.	
218 219 220 221 228 229	0°0 0°0 0°0 0°0	*11523 *11549 *11590 *11496 *11674 *11876	*23124 *23166 *23271 *23076 *23441 *23812	*34803 *34854 *35041 *34740 *35298 *35808	·46560 ·46616 ·46898 ·46488 ·47243 ·47864	·58395 ·58455 ·58839 ·58320 ·59274 ·59980	·70308 ·70375 ·70861 ·70236 ·71389 ·72156	-82300 -82381 -82961 -82237 -83587 -84392	·94371 ·94478 ·95136 ·94323 ·95867 ·96688	1.06521 * 1.07383 1.06494 * *
239 240 208 209 210 211 212	0°0 0°0 0°0 0°0	·11872 ·12060 ·12522 ·12464 ·12407 ·12517 ·12560	·23804 ·24185 ·25121 ·24999 ·24882 ·25125 ·25181	·35798 ·36375 ·37796 ·37605 ·37425 ·37823 ·37864	•47856 •48630 •50546 •50282 •50035 •50609 •50609	•59979 •60951 •63370 •63029 •62713 •63481 •63417	·72169 ·73339 ·76267 ·75846 ·75459 ·76436 ·76289	·84428 ·85795 ·89237 ·88732 ·88273 ·89471 ·89227	·96758 ·98321 1·02280 1·01687 * 1·02582 1·02232	1.09161 1.10920 1.15396 * * 1.15306
232 233 234 235 236 237 238	0°0 0°0 0°0 0°0 0°0	*13428 *13390 *13401 *13516 *13362 *13448 *13412	*26942 *26887 *26855 *27084 *26803 *26977 *26899	•40541 •40491 •40366 •40704 •40323 •40587 •40462	*54224 *54202 *53938 *54377 *53922 *54277 *54103	*67990 * *67575 *68104 *67601 *68046 *67824	•81838 * •81281 •81886 •81362 •81894 •81627	*95768 * 95060 95725 *95208 *95821 *95514	* 1.08916 1.09623 1.09142 1.09827 1.09487	* * 1 ^{.2} 3168 1 ^{.2} 3912 1 ^{.2} 3548
222 223 224 225 226 227	0.0 0.0 0.0 0.0	•15369 •15327 •15287 •15486 •15304 •15539	·30781 ·30717 ·30635 ·31049 ·30667 ·31135	*46237 *46170 *46047 *46688 *46091 *46789	•61738 •61686 •61526 •62403 •61579 •62502	•77285 •77266 •77074 •78194 •77133 •78277	•92879 •92911 •92693 •94061 •92755 •94118	1.08521 1.08622 1.08385 1.10003 * 1.10030	1°24212 1°24401 1°24152 * * 1°26019	* 1.40250 1.39996 * *
61.	H	ollow C)gival-h	eaded 1	Projecti	iles. w	= 125	lbs.; <i>d</i> =	= 8·92 i	nches.
230 213 214	0°0 0°0	*14203 *17402 *17620	•28707 •35024 •35453	°43512 °52866 °53499	* * *71757	* •90226	* * *	* * *	* * *	* * *

36

Report dated Feb. 13, 1869. Times at which the Projectiles passed the Screens. 62. (1) 3-inch Gun. Solid Spherical Projectiles. w = 3.316 lbs.; d = 2.92 inches.

No. of	I Sc.	2 Screen.	3 Screen.	4 Screen.	5 Screen.	6 Screen.	7 Screen.	8 Screen.	9 Screen.	- Same
Round	1 30.	2 Screen.	3 oureen.	4 Screen.	5 ocreen.	o Screen.	y ocreen.	o ocreen.	9 Screen.	10 Screen.
284	o″•0	.07184	.14980	.23389	.32410	*	*			*
285	0.0	.07294	.15215	*23806	.33110	.43170	.54028	.65725	.78302	·91800
286	0.0	.07062	14698	*22963	*31912	·41601	.52086	.63423	.75668	*
287	0.0	.07170	•14937	'23347	•32446	·42281	.20900	.62352	.74687	·87956
288	0.0	°07592	15801	*24677	*34270	•44631	.22810	•67858	·80825	·94762
290	0.0	°08388	.17483	.27329	.37970	·49448	.61798	.75048	.89219	1.04325
291	0.0	·07691	·16011	*25008	.34730	*45225	.56540	.68722	.81818	·95874
292	0.0	·08361	17437	27270	•37897	'49350	.61655	.74833	*88900	1.03867
293	0.0	.07932	.16572	*25929	•36011	*	*	*	*	*
294	0.0	.07821	16311	.25210	*35459	•46200	•57776	.20231	*	*
295	0.0	.08312	.17320	.27070	.37608	•48979	.61228	.74400	•88540	*
296	0.0	.08225	.17166	•26863	*37355	·48681	.60879	.73986	*	*
297	0.0	.08183	17096	*26771	'37240	•48535	\$60688	.73731	*	*
312	0.0	*08442	17644	•27637	*38451	.20112	•62657	.76104	·89482	*
261	0.0	.12310	.25571	.39738	.54773	.70646	.87336	*	*	*
262	0.0	12460	.25812	.40033	*55104	.71009	.87736	1.02276	*	*
263	0.0	12318	*25554	*39677	*54655	.70456	.87048	1.04399	*	*
264	0.0	•11669	*24255	37732	•52076	•67266	•83284	1.00119	1.1222	1.30180
266	0.0	12536	•25987	*40326	*	*	*	*	*	*
267	0.0	•12046	•25079	*39027	.53821	*	*	*	*	*
268	0.0	.15270	•31383	*48337	.66130	.84760	*	*	*	*
269	0.0	.13915	•28619	.44124	•60443	.77590	•95580	1.14429	*	*
270	0.0	•12822	•26517	•41085	.56526	.72840	*	*	*	*
271	0.0	*13572	•28001	*43270	•59362	.76260	·93947	1.15402	*	*
272	0.0	•14167	.29124	•44888	.61477	.78910	•97207	*	*	*
273	0.0	•13753	*28347	*43745	.29910	*	*	*	*	*
	1.0	1		1						

63. Hollow Spherical Projectiles. w = 2 lbs.; d = 2.92 inches.

								1		1
310	0.0	·07226 ·07149	•15304 •15327	•24534 •24658	•35123 •35305	·47185 ·47391	·60741 ·60958	·75718 ·75964	·91949 ·92318	*
281	0.0	•09060	•19443	*31194	•44356	•58970	.75075	*	*	
282	0.0	•11458 •09013	·24393 ·19353	·38742 ·31024	*54442	*71429	•89638 *	1.09004 *	*	
299	0.0	·07816	·16795	•27023	•38586	.51570	* •80837	* •99012	*	
300 301	0.0	•09936 •07729	·21333 ·16520	•34157 •26556	·48373 ·37963	·63945 ·50811	.65115	.80837	.97887	1.16124
277	0.0	11958	•25372	.40171	.56286	.73650	+	+	*	*
279	0.0	•11549 •09346	•24592 •20110	·39048 ·32296	•54836 •45908	* •60950	* * *	*	*	*
303	0.0	·09221	.19822	.31857	*45347	·60278	•76597	•94214	1.13004	1.32808
304	0.0	*09274	·19968	*32098	•45680	•60730				
274 275	0.0	·17092 ·18342	·35481 ·37606	•55005 •57907	·75502 ·79360	÷ .		*	*	*
308	0.0	*12551	·26565	•41962	·58662 ·58855	* .76933	* 96193	*	*	*
309	0.0	•12540	•26580	•42044	50055	70933	90193			

64.	(2)	5-inch Gun.	Solid Spherical Projectiles.
		w = 15.789 ll	bs.; $d = 4.92$ inches.

					1				1	
No.of	1 Sc.	2 Screen.	3 Screen.	4 Screen.	5 Screen.	6 Screen.	7 Screen.	8 Screen.	9 Screen.	10 Screen.
Round			3.000	4	3		,		,	
407	0".0	°07452	15252	*23432	•32024	*		*	*	*
408	0.0	.07814	.16030	*24664	*33732	·43251	.53238	.63710	•74683	·86173
409	0.0	°06918	.14195	21847	•29884	*38314	.47147	.56399	•66098	•76291
410	0.0	·06822	·14003	.21558	29502	.37849	•46613	.55807	•65444	.75537
411	0.0	·06927	14206	21851	29876	•38296	.47126	•56381	*	*
315	0.0	·07980	•16385	*25227	*34518	*44269	•54491	.65195	*	*
316	0.0	.08212	°16834	*25878	*35359	*45295	*55707	•66618	.78053	.90039
317	0.0	·07982	16372	-25188	*34449	'44174	\$4382	·65091	.76318	.88079
318	0.0	.09412	•19278	•29583	.40332	.51525	*	*	*	*
380	0.0	·07848	•16069	•24689	*33734	*43229	.53199	•63669	•74663	•86205
381	0.0	·08017	•16423	*25235	*34471	•44149	*54287	•64902	.76011	.87630
									.06.10-	1000.6
382	0.0	·09119	18674	•28690	.39191	*50200	•61739	•73829	•86491	•99746
383	0.0	•09078 •08680	•18561	*28508	•38978	•50030	*	*	.81006	*
385 386	0.0	*08817	17754	27247	.37186	47600	•58519	•69974	·81996	·94616
	0.0	*08788	.18031	•27688	*37830	*48492	•59700	.71467	•83789	•96641
387	0.0	00/00	•18011	•27687	*37834	*48470	*59613	.71280		
388	0.0	·09636	19724	.30278	.41312	.52840	.64875			
389	0.0	·09625	19685	:30209	41226	.52763	•64846	.77500	.90750	*
390	0.0	•09533	19495	29942	.40929	.52510	*	11500	*	*
392	0.0	•09583	19598	.30086	.41090	52655	*	*	*	*
5,-				50000	40090	555				
6	5.	Hollow	Spherie	cal Proi	ectiles.	w = t	7 [.] 894 lb	s.: $d =$	4.02 in	ches.
							- 21	.,		
						1		1		
394	0.0	·06508	13692	.21622	*30367	*39995	.50573	.62167	.74842	*
395	0.0	.06332	•13282	.20930	29356	.38639	*48857	.60087	.72405	*
396	0.0	·06266	13165	*20774	·29161	.38425	48616	.59815	.72095	.85529
397	0.0	.06355	13354	21061	.29540	*	*	*	*	*
398	0.0	.06172	13141	*20910	29482	•38858	•49038	•60022	.71810	*
399	0.0	•06 278	•13209	•20863	*29310	•38619	•48858	•60094	•72393	·85820
400	0.0	·06521	13732	.21692	•30461	.40100	•50671	.62237	*	*
401	0.0	•06236	13127	*20741	*29145	•38405	•48587	•59756	•71978	•85319
							10-06		.00-11	
320	0.0	•07762	•16322	*25746	*36100	*47451	•59867	•73416	•88166	*
321	0.0	.07680	•16159	*25499	*35762	.47010	*	*	*	*
322	0.0	.07769	•16288	•25666	*36012	*	*	*	.0666-	*
323	0.0	°07574	15963	*25226	*35421	•46605	•58835	•72168	·86661	*
324	0.0	°07616	*16036	*25322	35537	•46745	.20011	*	*	
325	0.0	·07681	°16120	*25398	*35595	•46790	-59061	*	*	*
402	0.0	.07657	.16082	*25355	•35556	.46765	.59062			*
402	0.0	07870	16534	25355	35550	48026	•60608	•74359	·89355	*
403	0.0	°07564	10534	25065	30537	*46211	.58333	74559	\$333	
404	0.0	07655	15095	25359	35140	'46920	50555	*	*	*
405	0.0	07597	15955	² 5559 25154	*35273	*46390	.58582	*		
400		5/39/	- 3733	~3*34	55-15	40390	Jojon			

66. (3) 7-inch Gun. Solid Spherical Projectiles. w = 44.094 lbs.; d = 6.92 inches.

No. of Round		2 Screen.	3 Screen.	4 Screen.	5 Screen.	6 Screen.	7 Screen.	8 Screen.	9 Screen.	10 Screen.
326	0".0	·08417	.17110	·26107	125 426		155000	*.		
		00417			*35436	.45125	•55202			*
327	0.0	08409	17124	*26154	35507	.45190	•55209	•65571	.76282	.87349
329	0.0	.08673	•17631	•26889	•36463	•46370	.56627	.67250	.78255	
330	0.0	.08412	17125	•26144	*35475	.42124	•55097	.65400	.76039	
341	0.0	·08431	17168	•26221	.35600	'45315	•55376	.65793	.76577	. 87739
373	0.0	.08552	·17406	•26571	.36055	•45866	.26011	•66498	•77336	.88534
379	0'0	·08547	.17412	•26607	.36127	·45979	.26168	•66699	.77577	·88808
331	0.0	.09281	.18900	·28863	.39175	.49840	·60862	*		*
332	0.0	.09285	.18910	28875	.39180	49826	.60813	*		* -
334	0.0	.09353	·19016	·28999	•39313	•49969	.60979	*	*	*
336	0.0	·09343	19010	'29011	•39356	*50054	.61115	•72548	·84361	·96561
	0.0	°09241	·18816	28731	38992	*49606	.60581	12340	04301	90301
342			18806	20/31			.60668	1700-6		
343	0.0	·09226	10000	*28740	.39029	•49672	-00008	•72016		
337	0.0	.11023	•22480	•34285	•46473	.59049	.72017	·85381	·99145	1.13312
338	0.0	12033	•24458	.37276	•50487	•64090	*	*	*	*
339	0.0	12482	25382	·38689	•52393	•66484	·80953	*95790 *86897	1.10982	*
344	0.0	11235	*22853	•34860	·47262	·60065	.73275	·86897	1.00932	*
345	0'0	.11343	·23054	*35148	'47639	.60541	.73867	*	+	* ,
250	0.0	17.1280	100080	144700	150500	ITTOTT	101270	1107860	1101711	1140010
353	0.0	.14380	*29083	°44122	*59509	.75255	•91370	1.07863	1.54241	1'42010
354	0.0	•14585	*29504	•44768	.60387	•76370	·92725	1.09429	*.	
355	0.0	•16081	*32433	•49151	•66289	·83861	1.01838	1.50121	*	*
356	0.0	15464	.31210	.47309	.63802	.80700	·97985	1.12010	*	*
357	0.0	14087	·28567	°43445	•58726	.74415	*	*		*
67	. E	Lollow	Spheric	al Proje	ectiles.	w = 2	2.047 lb	a =	0.92 in	cnes.
246	0.0	·08645	·17875	107743	128000	110580				
346	0.0	08485		·27741 ·27296	•38293	*49580 *48860				
347	0.0		•17569		*37711		*	*		
349		.08534	•17644	•27388	*37826	·49021	·61040		.86685	
350	0.0	·08473	17545	27255	•37641	•48740	•60589	.73225	00005	-
351	0.0	.08780	18186	·28255 ·27528	*39024	.20530	.62810	.75901		
352	0.0	.08530	•17698	27528	.38043	·49267	*	*		*
365	0'0	.08881	18402	•28599	.39208	.21162	*	*	*	*
366	0.0	.08716	·18045	28034	.38724	.20120	.62343	·75332	·89146	*
367	0.0	·09480	•19626	.30476	·42068	.54440	•67630	*		*
368	0.0	.09536	19750	•30669	•42322	.54740	*	*	*	*
369	0.0	.09506	19684	30553	42153.	.54545	·67811	*82054	·97398	
370	0.0	.09525	.19717	•30618	42262	.54675	.67875	*81871	·96663	*
371	0.0	·09468	19600	'30421	41957	.54236	.67287	.81140	*	*
372	0.0	.09444	19524	.30299	41814	.54102	.67185	.81077	.95785	
374	0.0	09247	19173	29801	.41153	.53249	.66109	.79752	.94196	1.09458
375	0.0	.08807	18226	. 28287	*39020	.50456	·62626	*	*	*
376	0.0	.09333	19295	29928	41275	.53379	.66282	.80025	·94648	*
377	0.0	.09692	20102	31252	43164	.55859	.69357	.83677	*	*
378	0.0	·08971	·18601	28919	*39954	.51736	.64295	.77662	·91868	
360	0.0	10942	*22612	•35036	•48240	.62250	*	*	*	*
363	0.0	.10800	*22382	·34751	·47905	.61835	.76523	·91942	1.08026	*
364	0.0	·09995	•20620	.31931	·43981	•56820	*	*	*	*
J T										
5.4										

No. of Round	1 Sc.	2 Screen.	3 Screen.	4 Screen.	5 Screen.	6 Screen.	7 Screen.	8 Screen.	9 Screen.	10 Screen.
253	0."0	°07805	·15818	·24043	.32485	.41148	.50035	.59148	•68489	•78059
255	0.0	·07719	15653	•23802	.32167	•40748	*49545	.58557	.67783	.77222
257	0.0	.08017	16218	•24617	*33227	•42059	.51124	•60432	•69993	•79817
258	0.0	·08021	•16231	*24640	*33258	*42095	.51161	•60466	*70019	.79829
259	0.0	°07961 °08015	*16131 *16206	·24510 ·24591	·33098 ·33187	*41898 *42010	•50913 •51074	·60148 ·60392	*69608 *69974	·79300 ·79827
	0.0	*08885	.18018					•67538	.78228	·89182
204 205	0.0	·08673	17575	·27404 ·26707	*37047 *36071	•46949 •45669	·57112 ·55503	0/530	*	*
206	0.0	*08907	18050	27454	.37097	•46989	.57133	•67531	•78183	•89090
241	0.0	10880	17841	27121	•36640	•46399	•56397	•66633	.77107	*
242	0.0	·09022	•18284	•27792	*37552	•47569	•57849	•68396	•79216	.00313
243	0.0	°08914	18060	•27443	*37068	•46940	•57064	•67445	*78087	•88995
244	0.0	·08950	.18130	°27546 °27021	*37204	•47110 •46227	·57270 ·56209	·67690 ·66454	•78376	·89334 ·87765
245		·o8779	•17783		*36500				•76970	
179	0.0	*09729	19714	*29957	*40459	•51221	•62244	.73527	*85069	•96870
180 181	0.0	*09712 *09799	°19691 °19849	*29937 *30155	°40448 °40723	·51221 ·51560	·62254 ·62673	·73547 ·74070	·85100 ·85756	•96915 •97733
182	0.0	·09/99	*19918	*30267	*40884	•51775	62943	*74388	*86113	·97/33
183	0.0	.09608	19459	*29559	39915	•50534	.61423	.72589	·84038	*
184	0.0	12202	•24689	.37462	*50523	.63875	.77521	·91464	1.05206	1.20248
185	0.0	13617	•27488	.41614	•55996	•70634	·85528	1.00678	1.16083	*
187	0.0	12312	24946	*37894	.51148	.64700	.78541	•92662	1.07023	*
189	0.0	•13121	•26522	.40204	•54168	.68415	·82945	·97758	1.12822	1.58536
190	0.0	12599	•25478	•38638	•52080	•65805	.79814	*	*	*
191 192	0.0	·12830 ·13156	•25946 •26577	·39350 ·40265	*53044 *54222	·67030 ·68449	·81310 ·82947	°95887 °97718	1.10763	* 1*28092
194		13130	203/1	40205	54022	00449	02947	9//10	1 12/05	1 20092
6	9	Hollow	Spheri	cal Proj	jectiles.	w = 6	7.5 lbs.	; $d = 8$	886 inc	hes.
248	0.0	.07407	.15262	:22206	.31651	•40310	•49296	•58620	·68291	•78316
240	0.0	•07497 •07793	15202	*23306 *24290	*33004	*42035	·51389	*61071	•71086	*
251	0.0	·07555	15415	°23580	*32051	.40828	49911	•59300	·68996	*
246	0.0	.08794	•17919	27388	37214	•47410	.57990	•68969	.80362	.92185
240	0.0	08728	17919	27135	.36845	*46914	*57357	.68189	79424	·91076
252	0.0	.08777	•17891	°27354	.37177	47371	•57946	·68911	80273	.92037
254	0.0	· 08 648	•17643	•26987	.36684	*46740	.57162	•67957	.79132	·90694
256	0.0	· 0 8798	•17933	*27407	•37226	*47400	•57944	•68877	*80222	*
193	0.0	.10213	°21416	*32710	•44396	56475	•68948	·81816	·95080	1.08741
194	0.0	10431	*21256	*32476	*44092	•56107	*68524	*81345	°94572	1.08206
195	0.0	*10401 *10788	•21186 •21978	*32359	43926	*55895	°68274 °70812	·81069	·94284	1.02021 1.11808
196 197	0.0	10/00	22583	*33572* *34427	45573 46641	·57985 ·59225	*72178	·84057 ·85500	·97722 ·99193	1.13261
										- 19201
198 199	0.0	°14273 °14482	·28919· ·29332	°43942 °44551	*59345 •60140	•75130 •76101	•91298 •92437	1°07850 1°09151	1°24787 1°26247	*
200	00	14483	29332	44551 •44521	.60084	.76013	·92437	1.08969	1.25998	1.43399
201	0.0	12838	·26021	*39549	*	*	*	*	*	*
202	0.0	14670	•29679	.45033	·60741	.76815	·93266	1.10103	1.27333	1.44961
203	0.0	•14453	•29263	•44436	*59977	.75890	.92178	1.08843	1.22888	1.43317
			1					1		

68. (4) 9-inch Gun. Solid Spherical Projectiles. w = 94.5 lbs.; d = 8.888 inches.

Report dated July 8, 1879.

70. Times at which the Elongated Projectiles passed the Screens.

12	* 91174 90106	* •98682 •98669	.94119 .93858 .93812	-98362 *	* * *	* * *	.79263 * .78356
II	* -82353 -81437	* •88608 •88675	-84923 -84632 -84601	11106. * 09688.	.75414 .74345 .74590	.74611 .74013 *	.71509 .70820 .7385 .71385 .71385
IO	* .73634 .72866	-78114 -78763 -78874	.75855 .75559 .75556	.79641 * .80631	.67347 .66374 .66594	•66636 •66090 *	-63865 -63250 -63780 -63780 -63144
6	.64270 .65019 .64392	-68630 -69144 -69271	-66915 -66636 -66587	.70408 * *	-59390 -58524 -58711	.58775 .58280 .56478	.55331 .55789 .55276 .55692
∞	-55930 -56510 -56014	.59347 .59749 .59871	-58103 -57860 -57785	.61264 * .61986	.51546 .50794 .50944	.51028 .50585 .49039	.48907 .48436 .48874 .48874 .48344
7	.47675 .48110 .47731	.50265 .50575 .5080	.49419 .49227 .49120	.52212 * 52821	.43818 .43183 .43183	.43396 .43006 .41707	.41593 .41192 .41575 .41575
6	.39505 .39820 .39820	.41384 .41619 .41702	.40863 .40731 .40592	.43256 .43256 .43276	.36208 .35691 .35773	.35879 .35545 .34483	.34388 .34056 .34380 .34380 .33969
ŝ	.31421 .31640 .31640	.32704 .32877 .32940	.32435 .32364 .32201	.34398 .34450 .34806	-28717 -28318 -28375	-28476 -28202 -27368	•27292 •27029 •27290 •26947
4	.23425 .23570 .23446	.24225 .24346 .24394	24135 24116 23947	25641 25713 25955	21348 21063 21102	.20977 .20977 .20362	-20305 -20110 -20306 -2038
3	15520 15608 15539	15948 16024 16061	15963 15978 15829	.17205 .17205	.14104 .13925 .13951	14012 13869 13466	13427 13299 13299 13429 13244
61	-07710 -07752 -07724	.07873 .07909 .07934	.07918 .07942 .07847	-08439 -08491 -08554	.06987 .06904 .06918	.06950 .06870 .06870	•06659 •06596 •06660 •06565
I	0.0 0.0 0.,,0	0.0	0.0	0.0	0.0 0.0	0.0	0.00
No. of Round	461 462 463	464 465 466	467 468 469	470 471 472	473 474 475	476 477 478	479 480 481 482
d inch.	°.9		:::			:::	
w lbs.	0.02 0.04	0.04 0.04 0.04	0.0 <i>L</i> 0.0 <i>L</i> 0.0 <i>L</i>	0.0 <i>L</i> 0.0 <i>L</i>	50°0 50°0	50.0 50.0	50.0 50.0 50.0
Form of Head	Ogival "	Flat ,'	Hemi- spherical	Ogival "			
	^w inch. Round I 2 3 4 5 6 7 8 9 IO II	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	w ñch, Round I z 3 4 5 6 7 8 9 10 11 700 60 461 0"0 07710 115520 23425 31421 399505 47675 55930 64270 * * * 700 0 461 0"0 07752 15530 31640 39820 48110 56510 65019 73634 *33533 700 0 463 00 07724 15539 73446 31447 39542 47731 56014 64392 78866 *	w No.of inch, Round I 2 3 4 5 6 7 8 9 10 11 7000 60 461 0"0 07710 115520 23425 31421 39505 47055 55930 64270 *<	w No.of Ibs. I Z 3 4 5 6 7 8 9 IO II 700 inch, Round I 2 3 4 5 6 7 8 9 IO II 700 inch, Round 0 07710 15530 23476 31447 39595 45107 55510 55930 64270 *	w inch, Round I 2 3 4 5 6 7 8 9 10 11 7000 inch, Round 1 2 3 4 5 6 7 8 9 10 11 7000 inch, Round 0 07710 15530 23476 31447 39595 45103 55510 55930 64270 *	

EXPERIMENTS WITH THE CHRONOGRAPH.

71. Times at which the Ogival-headed Projectiles passed the Screens.

	9 I	1°14598 1°10662 *	* 1•18443 1•19497	* * *	* * 1.51324	1.47489 1.60796 *	1.46883 * 1.36720
	15	1.05958 1.05958	1°14957 1°10170 1°11086	* *	1.19802 * 1.40838	1:37142 1:49506 *	1.36718 1.23892 1.27279
	14	-98683 -95229 -98045	I'06333 I'01963 I'02754	* 1:04651 1:10815	1.10994 1.12917 1.30407	1.26918 1.38307 *	1.26607 1.14667 1.17887
	13	.90766 .87584 .90184	.97775 .93819 .94496	22610.1 69296. *	1.02202 1.03959 1.20032	1.16754 1.27214 *	1.16550 1.05502 1.08543
	12	-82884 -79988 -82374	-89283 -85734 -86307	.90405 .87949 .93116	.93430 .95055 1.09712	1.06667 1.16213 1.03961	1.06547 .96396 .99246
	II	.75041 .72442 .74614	-80857 -77705 -78183	-81850 -79691 -84390	-84683 -86203 -99449	.96654 1.05299 .94252	.96598 .87349 .89995
apart.	OI	.67242 .64946 .66903	.72496 .69729 .70121	.73355 .71495 .75736	-75968 -77401 -89240	.86713 .94468 .84597	-286703 -78361 -80789
5 feet a	6	-59492 -57501 -59241	.64200 .61804 .62118	.64924 .63358 .67147	.67293 .68647 .79086	.76841 .83715 .74996	.76862 .69433 .71629
Screens 75 feet	ø	20102: 20105: 20105:	.55968 .53928 .53171	-56561 -58515 -58617	.58665 .59939 .68986	.67035 .73034 .65448	-67074 -60564 -62514
Ñ	7	.44170 .42765 .42765	.47797 .46101 .46279	.48269 .47242 .50139	.50090 .51273 .58944	.57292 .62419 .55951	.57339 .51754 .53445
	9	.36609 .35478 .36562	.39684 .38322 .38440	.40050 .39256 .41707	.41574 .42645 .42645 .48964	.47610 .51866 .46504	.47657 .43000 .44422
	ŝ	28250 71192.	.31628 .30586 .30552	.31904 .31316 .33315	.33122 .34052 .39046	.37986 .41374 .37106	.38027 .34299 .35445
	4	21709 21085 21085	.23629 .22888 .22914	-23830 -23421 -24955	.24737 .25492 .29190	-28416 -30942 -27756	-28447 -25650 -26514
	3	.14382 .13986 .14420	.15690 .15226 .15226	.15824 .15570 .16620	.16421 .16964 .19397	18897 20569 18455	18916 17051 17629
	cı	•07144 •06957 •07174	.07588 80750 80570	.07882 .07763 .08304	-08175 -08467 -09667	.09426 .10255 .09203	.09434 .08501 .08791
	I	0.0 0.0 0.,,0	0.0 0.0	0.0	0.0	0.0	0.00
	No. of Round	412 413 414	415 416 417	418 419 421	422 423 424	425 426 427	428 430
	d No. of Inches.		:::	:::	:::		
	att Ibs.	6.50 6.50 6.50	6.50 6.50	6.44 6.50 6.47	6.56 6.47 6.66	6.56 6.63 6.47	6.63 6.47 6.47
						-	

1б	* * *	I.6200I *	* \$005669	1.98121 2.04625 1.53357	1.49754 1.57261 1.48443	1.59996 1.93707 1.86544	1.89624 1.88484 2.07150	2°10153 2°41078 *	2:38947 * *
15	* 1.54766 1.49462	1.50644 * 1.57658	* 1.87687 1.82044	1.84399 1.90338 1.42682	1.39369 1.46371 1.38153	1.48871 1.80265 1.73788	1.75631 1.75684 1.93074	1.95864 2.24633 *	2.22748 * 2.21853 *
14	* 1.43236 1.38340	1.39366 1.45625 1.45901	1.69147 1.73749 1.68506	1.70749 1.76144 1.32073	1.29042 1.35539 1.27918	1.37814 1.66905 1.61091	1162901 1162911 116238	1.81613 2.08233 2.24471	2'06590 2'23124 2'05675 2'24188
13	* 1:31778 1:27285	1.28167 1.33979 1.34219	1.55658 1.59899 1.55054	1.57172 1.62043 1.21529	1.18772 1.24765 1.17739	1.26825 1.53625 1.48453	1.50803 1.50167 1.65041	1.67402 1.91883 2.06766	1.90473 2.05709 1.89542 2.06666
12	* 1.20392 1.16297	1.17047 1.22402 1.22612	1.42231 1.46136 1.41687	1.43667 1.48034 1.11049	1.08559 1.14049 1.07617	1.15903 1.40423 1.35874	1.37972 1.37454 1.51083	1.53232 1.75586 1.89141	1.74395 1.88336 1.73455 1.89189
II	44520.1 84060.1 *	08011.1 96801.1 90090.1	1.28871 1.32458 1.28404	1:30235 1:34117 1:00633	0.98403 1.03392 0.97552	1.05047 1.27297 1.23351	1:25199 1:24774 1:37163	1.39103 1.59344 1.71594	1.58354 1.71005 1.57416 1.71757
IO	* 97837 94525	.95045 .99463 .99624	1.15583 1.18862 1.15205	1.16876 1.20292 0.90280	0.88305 0.92794 0.87544	0.94257 .1.14246 1.10879	1.12484 1.12128 1.23281	1.25016 1.43157 1.54123	1.42349 1.53716 1.41426 1.54371
6	-85266 -86669 -83741	-84164 -88104 -88245	1.02371 1.05346 1.02089	066667.0 1.06559 002559	0.78265 0.82254 0.77593	0.83532 1.01269 0.98452	0.99824 0.99517 1.09473	1.10971 1.36725 1.36726	1.26379 1.36469 1.25487 1.37032
8	-74416 -75574 -73025	.73363 .76822 .76943	-89239 -91909 -89056	61626. 61626. 22013	.68282 .7177 .67676	-72871 -88365 -86064	-87214 -86942 -95630	.96967 1.10948 1.19400	1.10445 1.19264 1.09600 1.19740
7	.63626 .64553 .64553 .62378	-62642 -65619 -65718	-76192 -78549 -76105	.77238 .79371 .59599	-58356 -57861 -57861	.62274 .75534 .73709	-74648 -74404 -81861	-83003 -94926 I 02143	0.94548 1.02101 0.93767 1.02494
9	-52894 -53607 -51801	.52001 .54495 .54570	.63235 .65266 .63234	.64174 .65914 .49498	.48487 .50985 .48079	.51740 .62775 .61381	.62120 .61904 .68129	-69079 -78960 -84954	-78690 -84980 -77990 -85295
N	.42217 .42736 .41295	.41440 .43449 .43500	-50374 -52060 -52060	.51186 .52548 .39462	.38675 .40677 .38353	.41268 .50086 .49074	.49628 .49443 .54433	.55193 .63052 .67832	.62872 .67902 .67902 .62271 .68142
4	.31592 .31940 .30861	.30959 .32478 .32508	.37614 .38931 .38931	.38274 .39273 .29493	"28921 "30425 "28682	.30858 .37465 .36785	-37170 -37022 -40773	.41344 .47202 .50777	.47094 .50866 .46611 .51036
3	.21016 .21219 .20500	-20558 -21580 -21594	.24961 .25878 .25880	.25439 .26090 .19593	19224 20228 19066	20510 24911 24511	"24746 "24641 "27148	27530 31410 33788	.31356 .33871 .33871 .33977
69	10486 10572 10572	.10238 .10754 .10758	.12421 .12901 .12506	29460. 18921.	.09584 .10086 .09505	.10224 .12423 .12423	.12356 .12300 .13557	13749 15676 16863	15658 16916 15475 15475 16965
1	0.00	0.0	0.00	0.00	0.00	0.00	0.0	0.0	0.00
	432 433 434	435 436 437	438 439 440	441 442 443	444 445 446	447 448 449	450 451 452	453 454 455	456 457 458 458
						 6.27	= = = .		
	6.63 6.56 6.63	6.56 6.63 6.63	6.63 6.31 6.34	6.31 6.53 6.41	6°41 6°34 6'41	6.41 6.31 70'0	0.04 0.04 0.04	0.04 0.04	70.0 70.0 70.0

Report dated Aug. 31, 1880.

Times at which the Ogival-headed Projectiles passed the Screens. 72.

	12	* * 65665	.64154 .64167 .64726	* * *74929	"74251 "74427 "73273	* -64248 *	* * *77856 *83713
	İI	.5 ⁸ 164 * .59173	•57848 •57835 •58372	* * •67482	.66954 .67013 .66010	.67338 .57918 .71322	-68185 -68621 -70269 -70234 -75509
	OI	*51914 * *	-51636 -51607 -52112	* •61401 •60161	.59763 .59726 .58873	.60129 .51688 .63564	.60770 .61197 .62645 .62722 .67425
	6	.45761 * .46478	.45518 .45481 .45481 .45945	* .54121 .52965	.52679 .52567 .51860	•53030 •45557 •55945	.53489 .53897 .55156 .55320 .55320
ıpart.	8	•39705 * •40278	.39494 .39455 .39455 .39871	* •46957 •45894	.45703 .45537 .44969	.46040 .39525 .48465	.46341 .46721 .47801 .47801 .48028 .51615
50 feet a	7	.33746 * .34179	.33565 .33528 .33528	* •39908 •38948	-38836 -38637 -38637 -38198	.39158 .33590 .41125	.39326 .39669 .40578 .40845 .43890
Screens 150 feet apart.	6	*27884 * *28185	.27731 .27699 .28003	.29803 .32973 .32128	.32079 .31868 .31545	.32382 .27751 .33925	.32444 .32444 .32742 .33487 .33770 .33770 .36285
Sc	۲ŋ	.22118 .21967 .22302	11222. 21967 22221	-23664 -26151 -25436	-25434 -25231 -25008	.25709 .22008 .26864	.25695 .25941 .26527 .26802 .28798
	4	.16447 .16322 .16536	.16351 .16331 .16331	17614 19443 18875	18903 18726 18586	.19138 .16362 .19942	.19078 .19266 .19697 .19697 .19941
	3	£6801. 64201. 17801.	51601. 16201.	11653 12848 12448	.12487 .12353 .12353	.12665 .10812 .13158	.12591 .12718 .12998 .13187 .13187
	5	•05389 •05338 •05379	•05355 •05347 •05410	.05782 .06367 .06156	081300. 111300 2003	.06287 .05358 .05358	.06232 .06236 .06432 .06540 .07029
	I	0.0	0.0	000	0.00	0.0	0.0000
	No of Round	483 484 485	486 487 488 488	489 490 491	492 493 494	495 496 497	498 500 501 502
	d Hinches.				:::	:::	
	te Ibs.	%. %	: : :				

EXPERIMENTS WITH THE CHRONOGRAPH.

73. Report dated February 13, 1869.

										-		
Round	K_v	Round	Kv	Round	K _v	Round	Kv	Round	Ku	Round	Kv	
720	f. s.	880	f. s.	940	f. s.	100	o f. s.	104	0 f. s.	108	o f. s.	
	119.2	200	139.1		141.0	cont	inued.	cont	inued.	cont	inued.	
2/5	1192	202	147.9	in can		270	150.1	302	146.8	323	167.2	
		203	143.7			271	143.9	303	147.6	337	159.7	
		262	1 39.9	960	f. s.	272	137.5	308	143.7	339	153.6	
740	o f. s.	263	132.7	-		273	138.2	309	148.0	363	154.8	
275	113.2	264	138.6	198 199	143 [.] 6 139 [.] 5	277	138.9	310	145.2	369	197.5*	
		268 269	144.4	200	139 5	279 281	138.9	311	147.6	370	158.4	
		209	143·3 136·6	202	134.2	282	153.7	339 357	148.5	372 374	161.7 158.5	
760	f.s.	272	145 3	203	139.5	300	138.9	363	151.9	376	172.3	
		282	145 3 129 [.] 8	261	141.7	301	146.2	369	210.4*	377	163.2	
274	105.8	300	133.1	262 143.0		302	147.0	374	160.2	403	171.8	
275	10/2	301	125.1	263 264	142·1 142·2	303	145.6	N		N		
Mean	106.2	303	132.9	269	139.2	308	140.3	Mear	1 147.5	Mean	152.9	
		309	132.7	270	150.1	309 310	144.8					
-	_	353	173.1*	271	141.7	311	1300					
780	o f. s.	355 356	158.4	272	1 39.8	339	142.1	101	50 f.s.	IIO	o f. s.	
	-			273	133.5	353	137.1		-	Mear	1 154.0	
Mean	Mean 106.8 Mean 140.0		1 140.0	277	135.6	354	1 37.7	Mean	1 150.5	Incai		
			282 300	137.1	357	161.9			1			
				301	142.6	363	147.7					
800	o f. s.	900 f. s.		302	147.2	374	163.1	1080 <i>f. s</i> .		1120 <i>f. s</i>		
274	120.9	Mean	1 141.7	303	142.8	Mean 142.9		184	1530	184	1 50.6	
282	120.3			308	136.2			185	130.9	187	153.4	
303	113.4			309	141.3			187	145 ^{.5} 148 ^{.4}	189	147.6	
1.		920	o f. s.	311	139.8			189		190	148.5	
Mear	1 118.2	198	144.3	353 354	144.9	102	20 f. s.	191 192	153.8	191 192	152.0	
		199	141.6	356	118.14	Mean	n 144'0	192	158.5	193	149.1	
	~	200	137.5	363	141.2			261	152.9	194		
820	o f. s.	202	142.3					262	149.0	195	153°0 158°6	
Mean	1 128.2	203 261	141.4 138.8	Mean	n 140.7	10/	40 <i>f. s.</i>	263	152.8	196	157.8	
		261	130 0					264	149.1	197	139.1	
		263	137.7	0.8	o f. s.	185 189	131.6	266 267	152.8	261 262	156.9	
84	⊃ <i>f.s</i> .	264	140.3	1	-	109	1400	270	150.1	263	155.5	
1		268	144.7	Mean	n 141.7	192	142.7	277	144.7	264	151.4	
264 268	137.4	269	141'1			261	149.0	279	145.7	266	155.2	
200	144 1	270	150.1	IO	50 f. s.	262	146.9	281	150.6	267	158.7	
271	133.2	271 272	139.3			263	149.6	282	145.4	270	150.1	
274	133.3	277	131.9	185	131.6	264 269	146.8	290 292	157.1	277	147 [.] 4 148 [.] 6	
282	125·3 124·8	282	133.7	189 192	149.4	270	135 0	300	141.9	281	149.2	
303		300	135.3	192	1459	270	145.9	301	149.4	282	147.7	
309	127.2	301	137.6	199	138.7	273	142.7	302	146.7	288	164.7	
355		303	138.6	200	135.2	277	141.9	303	148.8	290	155.5	
Mean	n 133.9	309 353	137.3	202		279	142.5	304	150°2 146°8	291 292	162.0	
		353	150.7	203	136.6	281 282	152°1 142°9	308 309	140 8	292	162.7	
		355	126.6	261 262	145.2	202	158.5	310	149.3	300	143.2	
86	o f. s.	356	160.0	263	144.9	292	153.1	311	150.5	301	149.9	
		N		264	144.5	300	140.4	312	158.3	302	146.5	
Mean	n 136.4	Mean	n 141.1	269	137'4	301	148.2	320	171.2	303	149.5	
		1		L		1				1		

46 EXPERIMENTAL VALUES OF K_v FOR SPHERICAL PROJECTILES.

310152*1300144*4287157*8197197*1181149*1385165311155*0301149*9288156*3281145*2182144*7388156*320167*0303149*6290151*7285151*0193147*5388152*323165*6310153*8295155*5290149*5195152*7395153*335155*5310153*8295155*5290149*5195152*7395155*336156*733016*2290150*1292146*0285144*0401149*36616*7337156*2300149*5296150*2285144*1403155*366156*7337156*2302149*5296150*2285144*1401149*36616*7337156*2302149*5299144*9288149*1130*157*36616*7337154*2301148*2290147*1130*157*303149*2291144*7130*150*370155*034416*1310154*2301148*2290144*114*1130*150*137*130*157*30*147*5130*150*144*1150*130*150*144*1130*1	Round	κ.,	Round	<i>К</i> ~,	Round	Ko	Round	K.	Round	<i>Κ</i> _υ	Round	Κ _ν
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								-		-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									Mean	1 151.4		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	304					140.5					377	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						154.3			128	of.s.	3/0	158.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						157.8				-	385	163.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		152.0		149.9							386	162.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-							146.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-					149.8		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						14/1			195	150.8		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	338							150.0	-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	339			-	-							150.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			320		300	145.5	295					149.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							-	150.9				153.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			337		0						403	121.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										149.1	Mean	15011
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											Mican	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							~					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	372				312	151.2	303				130	o f. s.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				157.8				154.3			Mean	148.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	378								297	146.0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								155.7			132	o f. s.
Mean 155'4372159'1350157'8337152'4302140'31791335374154'0351155'4344155'2303148'4181147'6376163'1360155'6345154'0304147'8182142''Mean 155'3382171'3367160'1366157'6351154''311150'1194148'4389172''1367160'1363158'5320152'2193147''389172''1367160'10363158'5320152'2196157''389172''1367155'3364158'5320152'2196157''184148 2Mean 156'4372157'2367155'3336151'4252' 5246152''190147'6374151'9369159''2325155''1247159''193148'81180 f. s.378157''0371149''1334'153''285143''194152'51180 f. s.378157''0371149''1334'153''285145''194152'51180 f. s.378157''0372155''3350150''5286157''195157''1396160''13''1374155''3350146''3351151''2287146'''194152'5								153.9				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mean	155.4		159.1	350			152.4				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			374		351				-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		of e		1031		155.0						142.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-									193	147.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mean	155.3	382							2		148.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		389	172.1		167.0		158.5				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.16	ofel	403	163.5				154.2				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	Mean	156.4								162.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			- Call	1304					325			159.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						158.7						153.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.18.8			377	156.2						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			118	o f. s.	378							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Mean	156.2	302							151.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					389				351		287	146.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							378					145.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					399	156.5	352					144.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		158.7	130	0								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1536			403	159.1		160.5				142 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					Mean	154.0			368	149.4		145.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											296	145.5
282 149'8 196 155'6 285 157'6 197 139'0 1220 f. s. 403 155'3 372 152'3 300 148'3 288 160'3 264 155 7 Mean 154'2 Mean 152'7 375 145'1 302 146'0	281	147.8										143.8
285 157'6 197 130'0 1220 f. s. 403 155'3 374 147'8 301 145'2 288 160'3 264 155 7 Mean 154'2 Mean 152'7 375 145'1 302 146'0	282	149.8					401	152.5				140.2
200 100'3 204 1557 Mean 154'2 Mean 152'7 375 145'1 302 146'0		157.6	197		122	> f. s.	403	155.3				140'3
		~			Mean	15.4.2	Maan	152.7	375			145 2
370 1537 279 1537 376 150.4 303 147.6	290	153.7	279	153.2			Colli	.347	376	150.4	-	1476

EXPERIMENTAL VALUES OF K_v FOR SPHERICAL PROJECTILES. 47

Round	Kv	Round	Ku	Round	Kv	Round	Ku	Round	Kv	Round	Ku
	o f. s.	136	o f. s.		o f. s.		o f. s.		o f. s.		0 f. s.
	inned.	179	134.0	conti	inued.		inued.	cont	inued.		inued.
304	147.4	180 181	133.2	374	144.0	256	149.0	373	138.2	252	147.1
310 311	152°2 148°6	182	142'7 142'5	375 376	139'3 142'4	281 283	140 [.] 8 137.9	374 375	142°2 136°5	254	142'3 143'3
312	145.4	183	1424	377	148.5	285	139.5	376	138.6	256 281	
316	153.9	193	146.9	378	145.4	286	144'4	377	146.6	283	139.7 137.8
317	152.9	194	148.5	300	155.4	287	140.0	378	142.8	285	136.9
320 323	148·9 148·2	195 196	146·1 151·2	381 382	144°5 150°4	288 290	138·8 139·5	379 380	136.5	286 287	140 [.] 9 136 [.] 9
324	149.5	204	138.9	385	152.5	291	137.9	381	141.5	288	135.7
325	151.4	246	157.3	386	159.1	292	138.6	382	146.4	290	137.0
336	148.6	247	155.3	387	148.0	294	138.2	383	167.1	291	134.9
337 349	148 [.] 9 158 [.] 5	252 254	152°0 146°8	388 389	140 [.] 8 146 [.] 8	295 296	139 [.] 6	385 386	147.0	292 294	136.2
350	147.0	256	156.4	390	165.1	297	139.5	387	155.5 144.8	295	135·5 136·8
351	147.8	281	141.8	392	152.8	299	136.0	388	138.5	296	138.0
360	147.0	285 286	142°3 148°0	394	143°2 146°4	300	149.9 141.2	389 390	141.7	297 299	137.5
364	144.3	287	143.2	395 396	146.0	301 302	141 2	390	145.3	301	134°0 138°8
366	148.9	288	142'0	398	113.6	303	145.5	394	140.3	302	145.7
367	149.0	290	142.1	399	143.8	304	146.6	395	143.0	303	144.3
368 369	146·5 146·8	291 292	141°0 140°6	400 401	140'4 143'0	310 311	148·2 143·7	396 398	142·8 113·6	304 310	146°3 145°8
370	148.4	292	1400	401	145.0	312	1437	390	140.8	311	140.2
371	143.4	295	142.5	403	144.4	316	141.7 144.8	400	137.5	312	1 39.8
372	149.4	296	142.9	404	143.9	317	147.1	401	140.0	315	138.7
374 375	145.9 142.1	297 299	141.6	406 408	145'7 144'4	318 320	128·1 142·6	402 403	142 [.] 8 141 [.] 0	316 317	140 [.] 6
376	146.3	300	149.1	400		321	141.7	404	140.7	318	128.1
.377 378	150.4	301	143.3	Mean	145.2	323	142.9	405	149.9	320	139.6
378	148.1	302 303	145 [.] 9 146 [.] 6			324	143.4	406 408	142°3 141°6	321 323	1 38·9 140·4
382	14/5	304	1400	0	- f -	325 327	144·3 139·8	400	141 0	324	140.4
385	158.0	310	150.3		o <i>f.s</i> .	329	149.9	Mear	142.3	325	140.9
386	161.2	311	146.1	Mean	143.5	331	141.0			327	137.7
387 388	151·3 143 [.] 6	312 316	143.5 149.0			332 334	135.3 138.8			329 330	144.8
389	151.7	317	150.0	TIO	of.s.	336	142.2	142	o f. s.	331	139.7
394	146.2	320	145.7			341	146.2	Mear	140.7	332	135.3
395	149 8	323	145.5	179 180	133.9	342	141.8			334	134.8
396 398	149.3 113.6	324 325	146·4 147·8	181	134·4 138·5	343 346	1 39.4 1 42.4		ofe	336 341	142.6
399	146.8	336	145.5	182	140.6	347	144.1		.o f. s.	342	139.1
401	146.0	343	139.0	183	138.3	349	147.5	179	133.3	343	139.7
402	149'9 147'9	349 350	152.8 143.7	193 194	146.6	350 351	140°5 141°3	180 181	136°1 134°5	346 347	138.4 140.3
403	1479	351	1437	194	144.8	351	138.9	182	134 5	349	142.6
406	149.2	364	139.2	204	138.9	364	134.1	183	134.3	350	137.5
Maar	747-6	365	146.2	206	134.0	365	143.1	204 206	138.6	351 352	138·2 136·9
Medi	147.6	366 367	146·1 145·6	242 243	147'4 142'7	366 367	143°I 142°3	200	133.6	364	128.9
		368	143.8	244	145.4	368	141.3	243	139.9	365	140'1
134	o f. s.	369	142.4	246	152.8	369	138.9	244	141.8	366	140.3
1 .	146.8	370	145 ^{.6} 140 ^{.9}	247 252	151 O 149'7	370 371	142.7 138.7	245 246	146 ⁻⁶ 148 ⁻ 3	367 368	139.1 139.0
- Call		371 372	140 9	254	1497	372	1307	240	146.6	369	136.2

48 EXPERIMENTAL VALUES OF K_e FOR SPHERICAL PROJECTILES.

										1	
Round	٨.	Round	1.v	Round	Ku	Round	1.	Round	Λ_v	Round	λ_{v}
							a f c		ofe	7.06	o f. s.
144	o f. s. inual.		of.s.		o f. s. inued.		o f. s. inued.		0 f. s. inued.		inued.
								368		246	137.1
370	139.6	244 245	138.2 142.1	367	136.0	243 244	134'4 134'8	369	134°7 133°1	240	133.2
372	138 3	246	144'3	369	134.2	245	137.7	370	132.9	248	134.6
373	135'5	247	142'3	370	136.2	246	140.5	371	132.4	249	127.0
374	140.4	252	144.3	371	134.4	247	138.0	372	129.0	252 254	138.4 136.6
375	133.7	254	140°2 138°9	372	133 [.] 8 132 [.] 7	252	138.3	373 374	130.5 136.8	256	132.6
377	144.8	281	138.8	374	138.6	256		375	128.8	257	140'3
378	140°3 134°8	283	137.7	375	131.2	281	135°3 137°8	376	128.0	258	137.3 144.8
379		285 286	134.3	376	131.4	283 285	137.6	378	135.9	260 285	
380 381	147°4 138°5	287	137.6	377 378	143°2 138°1	286	131·8 134·3	379 380	131.6	286	129.4 131.2
382	142.5	288	132.6	379	133.2	287	131.0	381	132.7	287	128.3
383	158.3	290	134'4	380	143.4	288	129.6	382	134.7	288	126.6
385	85 141°7 291 86 150°9 292		132.0	381	135.6	290	131.9	383	140'0	290	129.4
380	86 150 [.] 9 292 87 141 [.] 7 294		134.4	382 383	138.0	291 292	129°1 132°4	385 386	131.9	291 292	126 · 4 130·3
388	388 135.7 295 1		134.1	385	136.8	294	130.2	387	135.8	293	123.2
389	389 136.5 296		135.7	386	145.8	295	131.2	388	130.8	294	128.1
390	390 147.4 297 392 137.9 299		135.6	387	138.7	296	133.2	389	126.4	295	128.9
392	137.9	301	132.0	388 389	133.1	297 299	133.8	390 392	128.9	296 297	131.3
395	139.8	302	145.6	390	138.2	301	133.7	394	132'1	299	128.4
396	139.7	303	143.0	392	130.9	310	140'1	395	133.7	301	1310
398	113.6	304	146.0	394	134.7	311	134.3	396	133.9	310	136.6
399	138.0	310	143.0	395 396	136.7	312	136.4	398	113.6	311	131'0 134'8
401	137.2	312	138.1	398	113.6	316		399	129.6	315	133.4
402	139.4	315	136.8	399	135.3	317	133.3	401	131.9	316	130.1
403	137.8	316	136.8	400	132.1	318	128.1	402	132.9	317	135.3
404	137.6	317 318	141'2 128'1	401	134.5	320	134.0	403	131.7	320	131.4
406	1390	320	136.8	403	134.7	323	135.7	404	138.0	322	135.9
408	138.9	321	136.3	404	134'5	324	135.3	406	132.7	323	133.5
Maria	n 139.2	323	138.0	405	141.9	325	134.3	408	133.2	324	
and Cold	1 1 39 2	325	137.6	406	135.8	326	153.7	409	136.9	325 326	131.2
		327	135.6			329	134.7	Mean	n 133.6	327	131.6
14	55 f.s.	329	1398	Mean	n 136.4	330	128.9			329	129.6
Mea	1 137.8	330	130.9			331	137.0			330	127'I
		332	134.9			332	134.9	154	to f. s.	331	135°3 134°9
		334	1310		pof.s.	336	133.0	Mea	n 132.4	334	124'2
1.48	80 f. s.	336	136.1	Mean	n 134.8	341	136.3			336	129.9
179	1327	341 342	139.3			342	135.0			341	133.4
150	137.2	343	140'1	1 2 10 1	ofe	343	130.5	150	50 <i>f. s</i> .	342 343	133.3
181	131.5	346	134.4	1	eo f. s.	347	133.3	204	1 135.6	346	126.7
182	133.6	347	136.7	179	131.7	349	133.2	205	123.7	347	129.9
204	137 7	349	137.8	180 183	137.3	350	131.5	206	130.3	349	128.7
200	133.0	351	135.3	204	136.6	352	133.2	241	135.6	350	120.0
241	128.3	352	135.0	206	131.6	365	134'4	243	131.7	352	131.5
242	1416	365	137.2	241	128·8	366	134.0	244	131.6	365	131.2
Charl	. 3/ 3	1 300	• 37 =	242	1 1 30 3	367	133.0	245	133.9	366	130.7
				-							

EXPERIMENTAL VALUES OF K_v for spherical projectiles. 49

										-	
Round	K_v	Round	K_v	Round	Κv	Round	<u>ሉ</u>	Round	Kv	Round	Κ,
156	0 f. s.	160	0 f. s.	160	0 f. s.	164	0 f. s.	166	of.s.	7.68	> f. s.
	inued.		inued.		inued.		inued.		5		inued.
	128.3							Mear	1 124.0		
373 374	128 3	257 258	135.0	395 396	127.8	294 295	123°6 124°0			379 380	127°0 124°6
375	126.4	259	121.8	398	113.6	296	127.0	+68	o f. s.	381	121.4
378	133.7	260	140.8	399	127.4	297	128.7	100	01.5.	385	114.9
379 380	130.3	285	127.0	400	124.8	299	125.1	205	120.8	394	I 22°I
380 381	135.7	286 287	128.1	401	127°0 126°8	301	125.0	241	128.8	395	122.3
382	129 . 7 130.7	287	125°6 123°8	402 403	120 8	310 311	129.5 124.4	245 247	122.1 151.1	396 398	123.1 113.0
383	130.0	290	126.9	401	126.0	312	131.6	248	127.3	399	122.2
385	127.3	291	123.7	405	130.6	315	130.1	249	122.5	400	120.3
386	133.4	292	128.2	406	126.7	316	124.2	251	117.9	401	122.5
387	132.9	293	122.7	408	128.4	317	129.7	253	121.5	402	121.1
394 395	129°5 130°7	294 295	125·8 126·4	409 410	124'0 124'9	320 321	126.4 126.6	254 255	133.9	403 404	120°6 120°9
395	131.1	295	1204	410		322	127.9	257	125.2	404	120 9
398	113.6	297	130.3	Mean	128.1	323	129.2	258	122.0	406	121.1
399	129.9	299	126.7			324	128.2	259	116.2	408	123.6
400	127.2	301	128.1			325	125.2	260	129.5	409	116.0
401	129'4 129'8	310	133.2	162	o f. s.	326	131.3	285 286	122'4	410	121.1
402 403	129.8	311 312	127.7 133.2	Mean	126.7	327 329	127 [.] 7 119 [.] 8	287	122.2	411	119.0
404	128.7	315	131.7	1. Can		330	123.6	288	118.2	Mean	122.4
405	134.3	316	127.3			341	127.8	290	122.4		
406	129.6	317	132°5 128°8	164	o f. s.	346	110.1	2 91	1186		
408	130.9	320				347	123.4	292	124'0	170	o f. s.
409 410	129.7 126.9	321 322	128·9 131·8	204 205	131.9 131.6	349	120°1 123°0	293 294	121.0	Maan	121.1
4.0 1		323	131.3	205	128.6	350 351	1230	294	121.0	Micali	
Mean	131.4	324	130.2	24I	129.4	352	128.2	296	125.1		
		325	128.2	242	129.5	366	124.0	297	127.1	172	0 f. s.
		326	138.7	243	126.5	373	123.7	299	123.5		-
1580	o f. s.	327 329	129 [.] 8 124 [.] 7	244 245	125°1 126°6	375 379	122°0 128°0	301 310	121 8	248 249	124'4 121'2
Mean	129.8	330	125.4	246	1 30.4	380	128.3	311	121.5	251	117.9
		341	130.2	247	1250	381	124.1	312	130.1	253	120.4
		346	122.9	248	130.0	385	118.8	315	128.2	255	116.3
1600	o f. s.	347	126.6	249 25 I	124.1	386	119.5	316	122.2	257	119.7 118.0
204	134.1	349 350	124°3 125°8	251 252	117·9 132·6	387 394	127°5 124°5	317 320	127'0 124'0	258 259	114.5
205	122.6	351	126.9	253	122.6	394	125.0	321	124'4	260	122.8
206	129.3	352	129.8	254	134.4	396	125.7	322	123.9	284	105.5
241	128.9	365	129.1	255	115.4	398	113.0	323	127.1	285	120.3
242	132.5	366	127.4	256	130.1	399	124.9	324	125.8	286	119.4
243 244	129°0 128°4	373	125.9	257 258	130'I 127'9	400 401	122.5	325 326	122°2 123°8	287 288	115.9
245	130'2	378	131.6	259	118.9	402	123.9	327	125.6	200	119.1
246	133.7	379	129.1	260	135.7	403	123.3	329	115.3	292	121.8
247	129.2	380	131.9	285	124.7	404	123.4	330	121.9	293	121.2
248	132.4	381	126.9	286	125.1	405	127.1	341	125.2	294	119.6
249 251	125.5	382 383	126.8	287 288	123.1	406 408	123.9	346	115 [.] 4 120 [.] 4	295 296	119.3
252	135.2	385	121.3	200	121 1	400	119.7	347 349	115.9	290	125.6
253	123.3	386	126.7	291	121'1	410	123.0	350	120.3	299	122.0
254	135.3	387	1 30.2	292	126.1			352	126.6	301	118.2
256	131.0	394	127.0	293	122.3	Mean	125.4	373	121.4	310	121.3
	1]

В.

50 experimental values of K_{σ} for spherical projectiles.

-											
Round	15	Round	۲.	Round	λ.	Round	K'v	Round	Ko	Round	Ku
_											
1				. 0.				- 00			- 6 -
172	o f. s.		o f. s.		0 <i>f. s.</i>		o f. s.		o f. s.	194	o <i>f. s</i> .
6 111	inued.		mued.		inued.	cont	iuued.	1	inued.	Mean	106.8
311	1180	285	118.2	258	107.9	253	114.8	285	112.2		
315	126·S	286	116.6	259	112.7 106.8	255	116.1	286	108.8		~
316	120'7	287 288	115.9	260 284	105.4	257 258	100.9	287 288	109.4	190	o <i>f. s</i> .
320	121.7	291	113.7	285	116.0	259	112.7	310	101.0	248	103.1
321	122.2	293	121.1	2S6	114.1	260	97.6	311	108.0	284	105.5
322	120.1	294	117.6	287	113.0	284	105.4	323	117.6	285	108.4
323	125.1	299	120.5	288	0.111	285	114.1	394	111.0	286 287	103.8
324 325	123'7 119'3	301	115 ^{.0} 116 ^{.8}	291 293	111.3	286 287	111.2	395	109.3	310	105°3 90'3
326	116.5	311	115.2	294	115.8	288	108.6	396 397	107.9	311	
327	123.4	315	125.3	301	111.6	291	109.1	398	113.4	394	104·3 105·8
330	120.5	316	110.1	310	111.9	294	113.9	399	111.4	395	104.2
341	122.0	317	122.0	311	112.5	310	107.0	400	110.5	396	106.4
373	119.0	320 321	119 ^{.5}	315 317	123·8 119·6	311 320	109.8	401	111 4 109'0	397 398	104.0 113.2
379	120 3	322	116.2	320		321	116.1	404 406	109.0	399	107.2
381	118.8	323	123.2	321	117.3 118.1	322	108.2	407	107.3	400	106.2
394	119.7	324	121.6	322	112.4	323	119.4	409	1096	401	107.4
395 396	119.6	325 380	116.5	323 324	121.3	324	117.6	410	112.3	407	99°2 107°6
398	113.6	381	116.3	325	113.7	325 380	110.4	411	109.0	410	109.0
399	120.2	394	117.5	380	113.8	394	113.1	Mean	110.5	411	105.2
400	118.2	395	116.9	381	114.0	395	111.8	1		36	
401	120.0	396 398	113.0	394	115.3 114.3	396	113.3			Mean	105.5
403	118.1	399	118.0	395 396	114 3	398 399	113.2	190	0 f. s.		
404	118.4	400	110.1	398	113.5	400	112.2	Mean	108.9	198	o f. s.
405	120.3	401	117.7	399	115.7	401	113.4			-	105.8
406	118.3	402	115.2	400	114.1	402	110.3			-incan	1050
400	II47	403	116.0	401 402	115.6	404	111.3	192	o f. s.		
410	119.4	405	116.9	403	113.2	406	110.3	248	107.0	200	o f. s.
411	1169	406	115.0	404	113.6	407	111.3	251	117.5	284	105.3
Mean	119.5	408	119.2	405	113.7	408	115.2	284	105.3	286	101'4
		409	113.0	406	112'9 115'4	409	110.5	285 286	110.3	287	103.3
1		411	114.9	408	117.2	411	114°0 110 0	287	100-3	394	104.2
17.4	0 1. 5.	34		409	111.7	1		310	96.0	395 396	102.1
V	118.5	Mean	1170	410	115.8	Mean	111.2	311	106.1	397	102.1
				411	112.9			394	108.9	398	113.2
		178	o f. s.	Mean	114.6	.07	o f. s.	395 396	106.9 108.7	399	105.2
176	01.5							397	105.9	400	105.0
248	121.3	Mean	115.2			Mean	TIT4	398	113.3	409	100.3
242	120'0			182	o f. s.			399	109.3	410	107.3
251	117.9	180	0 f. s.	Mean	113.2	,00	o f. s.	400 401	105.5	411	103.9
253	118.8	1 million -						407	103.2	Mean	105.0
255	116:4	218	117.8			24S	110.7	409	108.7		.030
255	1129	251	117.9	184	o f. s.	249	116.6	410	110.7		
299	1130	253	117.0	2451	11.3"3	253	112.7	411	107.2	2020	$\circ f. s.$
2.0	1151	255	116.4	249	1177	255	115.9	Mean	107.8	Mean	104.3
	105.3	257	102.0	251	1177	284 1	105 3				
					-						

EXPERIMENTAL VALUES OF K_v FOR SPHERICAL PROJECTILES. 51

Round	<i>κ</i> _υ	Round	Kv	Round	Χ.,	Round	Κ.	Round	Κ.,	Round	Kv
286 394 395 396 397 398 399 400 401 409 410 411	o f. s. 98'9 102'8 99'7 102'0 100'2 113'1 103'2 103'7 104'8 105'6 102'3 103'3	394 395 396 397 398 399 400 401 409 410 411	o f. s. 100 ⁻⁸ 97 ⁻⁴ 99 ⁻⁸ 98 ⁻⁵ 113 ⁻⁰ 101 ⁻³ 101 ⁻⁶ 101 ⁻³ 101 ⁻⁶ 101 ⁻³ 103 ⁻¹ 104 ⁻⁰ 100 ⁻⁸	394 395 396 397 398 399 400 401 410	o f. s. 99'0 95'1 97'8 96'7 113'0' 99'4 100'1 100'0 102'4 n 98'8	394 395 396 397 398 399 400 401	⊃ f. s. 97'1 92'8 95'7 94'9 112'9* 97'5 98'6 98'2 m 96'4	395 396 397 398 399 401 Mea 2222 Mea	o f. s. 90.7 93.6 93.2 112.8* 95.7 96.4 m 93.9 o f. s. m 93.0	cont 398 399 401 Mea 226 Mea 228 396	o f. s. inued. 112·7* 93'9 94'7 n 92·0 o f. s. m 91'3 o f. s. 89'7
	0 <i>f. s.</i> 102 [.] 9		o f. s.		o f. s. n 97 [.] 9		o f. s. in 95 [.] 5	224 395 396 397	o f. s. 88·5 91·6 91·4	398 401 Mea	112 ^{.6*} 93 ^{.0} .n 91 [.] 4

74. Density of the Air when the following Rounds were fired.

		1		· ·	
No. of Rounds	Density	No. of Rounds	Density	No. of Rounds	Density
I- 15	1.005	225-240	0.989	431-438	1.052
16-41	1.011	241-260	0*986	439-444	1.039
42- 60	1.022	261-287	1.002	445-448	1.031
61-68	1.042	288-312	1.012	449-452	1.023
69-84	1.042	313-325	1.002	453460	1.024
85- 89	1.028	326-340	1.035	461	1.030
90-102	I '020	341-352	1.032	462	1.034
103-117	1.022	353-364	1.019	463	1.045
118-138	1.032	365-379	1.030	464-466	1.021
139-147	1.002	380-391	1'002	467-477	1.030
148-178	1.001	392-411	1.056	478-482	1.014
179-187	I °034	412-414	1.011	483-488	1.046
188-206	1.011	415-423	1.008	489-499	1.032
207-224	0.986	424-430	I '020	500-502	1.054

4-2

V f. s.	Experimental values of K _v	Correc- tion	Corrected values of Ky	U f.s.	Experimental values of K _v	Correc- tion	Corrected values of K _v
720 740 760 780 800 820 920 940 950 920 940 950 1020 1020 1020 1020 1050 1000 1020 1050 105	119 ⁻² 113 ⁻² 106 ⁻⁵ 106 ⁻⁵ 106 ⁻⁸ 118 ⁻² 128 ⁻² 133 ⁻⁹ 136 ⁻⁴ 140 ⁻⁰ 141 ⁻⁷ 141 ⁻⁷ 141 ⁻⁷ 141 ⁻⁷ 141 ⁻⁷ 141 ⁻⁷ 144 ⁻⁷ 144 ⁻⁷ 144 ⁻⁷ 144 ⁻⁷ 144 ⁻⁷ 144 ⁻⁷ 144 ⁻⁷ 155 ⁻⁵ 152 ⁻⁹ 155 ⁻⁵ 152 ⁻⁹ 155 ⁻⁵ 152 ⁻⁹ 155 ⁻⁶ 155 ⁻⁷ 155 ⁻⁷	$\begin{array}{c} + 6 \cdot 9 \\ + 4 \cdot 4 \\ + 0 \cdot 8 \\ - 0 \cdot 9 \\ - 0 \cdot 2 \\ + 0 \cdot 1 \\ - 0 \cdot 5 \\ - 0 \cdot 9 \\ - 0 \cdot 2 \\ + 0 \cdot 1 \\ - 0 \cdot 5 \\ - 0 \cdot 2 \\ + 0 \cdot 4 \\ - 0 \cdot 4 \\$	140 ⁻⁸ 140 ⁻⁸ 140 ⁻⁸ 140 ⁻⁸ 140 ⁻⁸ 140 ⁻⁸ 140 ⁻⁸ 142 ⁻⁰ 144 ⁻⁰ 144 ⁻⁰ 147 ⁻⁵ 152 ⁻⁶ 152 ⁻⁶ 152 ⁻⁶ 155 ⁻⁷ 155 ⁻⁷ 148 ⁻⁷ 145 ⁻⁷ 145 ⁻⁷ 145 ⁻⁷ 135 ⁻⁷ 135 ⁻⁷ 135 ⁻⁷ 135 ⁻⁷	1520 1540 1560 1560 1640 1660 1640 1720 1740 1740 1740 1740 1740 1740 1760 1880 1880 1880 1880 1880 1880 1880 18	133'6 132'4 132'4 129'8 128'1 126'7 125'4 124'0 122'4 121'1 119'8 118'5 117'0 115'2 114'6 113'2 111'7 111'7 111'7 111'7 111'7 111'7 111'7 111'7 111'7 111'7 111'7 111'7 111'7 110'5 108'9 107'8 106'8 105'2 105'8 105'0 102'1 103'1 105'0 105'0 105'0 105'0 105'0 105'0 105'0 105'0 105'0 105'0 105'0 105'0 105'0 105'0 105'0 105'10	$\begin{array}{c} + 0.3 \\ + 0.3 \\ + 0.1 \\ - 0.3 \\ - 0.1 \\ + 0.2 \\ + 0.2 \\ + 0.1 \\ + 0.1 \\ + 0.3 \\ + 0.1 \\ + 0.1 \\ + 0.3 \\ + 0.1 \\ - 0.1 \\$	133'9 132'5 131'1 129'7 128'3 126'9 125'5 124'1 122'7 121'3 119'9 118'5 117'1 115'7 115'7 115'7 115'7 115'7 115'7 115'7 115'7 115'7 115'7 115'7 115'7 115'7 115'7 115'7 115'7 115'7 115'7 115'7 108'19 108'1 109'8 108'1 106'5 105'7 104'9 104'1 103'2 102'2 101'1 99'9 98'7 97'6 96'5 95'4 94'4 91'4 90'4

75. Corrected mean values of K_v for Spherical Projectiles. (w = 534.22 grains).

EXPERIMENTAL VALUES OF K_o FOR OGIVAL-HEADED PROJECTILES. 53

0. 1	report			y 20,	1000,	oui	, 0, 10	, , ,	and At	-g. 0.	., 1000
Round	Κυ	Round	Kv	Round	Kv	Round	Kv	Round	Kv	Round	Ku
1.	<i>f. s.</i>		<i>f.s.</i>	575 <i>f.s.</i> Mean 98.6			f. s.		5 <i>f. s.</i>	715 f. s. Mean 80.2	
455 457 459	222°2* 126°1 135°1	439 442 452	107'7 116'0 114'2	Mea		436 437	92.6 98.4	Mea	n 97°5	Mea	
	130.6	453	112.6	-	<i>f.s.</i>	Mea	n 95.5	690	o f. s.	720	<i>f. s.</i>
		Mican		438 439 440	123.2 93.0 99.0	655	f. s.	426 433	108·8 96·8	424 426	75°0 77°6
1	5 <i>f. s.</i> 133 [.] 6		5 <i>f. s.</i> 107°2	441 448	93°3 90°0		n 96.5	434 435 436	88.7 103.2 93.9	434 435 443	94°9 103°6 78°9
				450 Mea	160.3* n 99.7		f.s.	437 447	101·7 81·4	445 447	71 · 9 76·4
440	o <i>f. s.</i> 199 [.] 7*	55° 439	o <i>f. s.</i>			433 436	94 ·2 98·4	Mea	an 96.4	Mea	n 82.6
457 459	126 [.] 1 141.1	441 442	89.0 116.6 105.2		<i>f. s.</i> 102 [.] 6	437	100.4 n 97.7	60	efe	72	5 <i>f. s</i> .
Mean	133.6	452 Mean	105 2	Wean		Mea		695 <i>f</i> .s. Mean 90 [.] 7			n 81.0
46	; <i>f. s</i> .				<i>f. s.</i>		; f. s.				
	1 129.9		5 <i>f. s.</i> 101 ·5	438 440 441	139.5 88.6 94.3	Mea	n 99.6	700 426	o <i>f.s.</i>	730 424	o <i>f. s.</i>
		-6		448 449	85.7 177.3* 169.8*	670	<i>f. s</i> .	432 433	72.7 96.0	426 434	77.3
454	o f. s. 171·2*	438	<i>f. s.</i> 87 [.] 4	450 451	96.2	433 435	94 ° 2 101°9	434 435 445	89.3 103.2 72.5	435 443 444	105.8 78 .3 70.9
456 458	108·1 153·1	439 440 441	94°3 104°8 89°4	Mean	100.9	436 437	103.0	447 Mea	79 ^{.2}	445 447	69 ° 4 76 ° 4
Mean	130.6	442	114.8 m 98.1		; <i>f. s</i> .	Mea	n 99.9			Mea	n 81.1
475	5 <i>f. s</i> .	Mica		Mean	112.9	67	; <i>f. s</i> .		5 <i>f. s</i> .	72	5 <i>f. s</i> .
Mear	1 <u>1 20' I</u>		5 <i>f. s.</i> in 99°5	600	5 <i>f. s</i> .	Mean	100.1	Mea	in 84.9		in 77.2
539	o <i>f. s</i> .			438 448 449	153.9* 81.0 153.3*	680	<i>f. s.</i>	710	o f. s.		
442 453	117 [.] 3 123 [.] 1	579 438	o <i>f. s.</i> 105.9	449 450 451	105.2	426 433	120 ·5 96·0	426 432	80·9 61·3	424	<i>f.s.</i> 72 [.] 3
Mear	120.2	439 440 441	94°3 102°1 91°0	Mean	100.6	434 435 436	87.4 101.9 98.8	434 435 443	92°3 103°2 80°5	425 428 443	100.4 70.8 78.3
53	5 <i>f. s</i> .	441 442 448	116·0 93·7	604	5 <i>f. s</i> .	430 437 447	101·7 83·8	445	71.9	444 446	71·9 70·3
1	1 118.8	Mean	100.2		113.2	Mea	n 98.6	Mea	in 81.1	Mea	n 77°3
				1							

76. Reports dated July 23, 1868, July 8, 1879, and Aug. 31, 1880.

745 f. s. 770 f. s. 805 f. s. 850 f. s. Mean 78.0 428 1 69.4 Mean 61.9 28 62.7 31 62.1 52.1 52.1	870 f. s. 905 f. s.
$75 \circ f. s.$ $\frac{444}{440}$ 71^{-2}_{22} $810 f. s.$ 32 62^{-2}_{23} 55 897 Mean 84^{+6} 427 62^{-7}_{430} 177 61^{-1}_{423} 425 94^{+2}_{23} $775 f. s.$ Mean 61^{+1}_{430} 430 5975 425 94^{+2}_{23} Mean 81^{+9}_{19} $815 f. s.$ Mean 70^{+0}_{29} 443 83^{+3}_{33} Mean 81^{+9}_{19} $815 f. s.$ Mean 70^{+0}_{29} 444 70^{-3}_{29} $780 f. s.$ Mean 57^{+9}_{29} $855 f. s.$ Mean $8_{3^{+0}}$ 57 78^{+5}_{25} $820 f. s.$ Mean 69^{-6}_{29} 60 87^{+2}_{22} 429 75^{+7}_{29} $860 f. s.$ Mean $8_{3^{+0}}$ 57 78^{+5}_{25} $820 f. s.$ Mean 69^{-6}_{28} $755 f. s.$ 135 91^{+7}_{27} 430 58^{+2}_{29} $860 f. s.$ Mean $8_{3^{+2}}$ 427 68^{+7}_{13} 428 66^{+1}_{17} 29 446 67^{+8}_{15} $825 f. s.$ 30^{-1}_{122} 90^{+1}_{122} 96^{+1}_{122} $700 f. s.$ Mean 75^{+6}_{13} 83^{-5}_{122} 90^{+1}_{122} 420^{+1}_{22} 421^{+1}_{22} 57^{+5}_{138} 95^{+3}_{13} Mean 75^{+6}_{122} 90^{+1}_{122} 425^{+1}_{22} 45^{+1}_{22} 446^{+1}_{29} 97^{+5}_{15} $835 f. s.$ $865 f. s.$ 421^{+1}_{22} 45^{+1}_{22} 448^{+1}_{23} 63^{+9}_{12} 422^{+1}_{23} 58^{+5}_{123} $422^{+1}_{$	continued. Mean 79'8 423 $46'3$ Mean 79'8 423 $63'9$ 910 f. s. Mean 63'1 910 f. s. 178 $875 f. s.$ 415 $82'1$ Mean 62'4 418 $94'0$ 419 $80'6$ $880 f. s.$ Mean 81'9 26 $61'9$ 28 $60'3$ 177 $57'3$ $915 f. s.$ Mean 80'2 423 $40'5$ 416 $80'2$ 420 $62'7$ $920 f. s.$ 178 $60'4$ 415 $85'8$ $915 f. s.$ $Mean 80'2$ 422 $80'5$ 416 $80'4$ Mean 64'9 $920 f. s.$ 178 $60'4$ $885 f. s.$ 416 $80'4$ $91'5 f. s.$ Mean 75'3 418 $93'5$ 419 $75'6$ $8yo f. s.$ Mean 72'9 $930 f. s.$ $930 f. s.$ $895 f. s.$ Mean 72'9 $930 f. s.$ $895 f. s.$ 415 $74'1$ Mean 72'9 $930 f. s.$ $89'4'9 f. 5'' s.$

56 EXPERIMENTAL VALUES OF K_{σ} FOR OGIVAL-HEADED PROJECTILES.

				1					11		Ky
Round	×.	Round	<i>λ</i> _υ	Round	No.	Round	٨.	Round	<i>Κ</i> υ	Round	21.0
	- 6 -	1120 f. s.		116	1160 f. s.		o f. s.	f.s. 1210 f.s.			o f. s.
-	0 f. s.	conti			nucd.		inucd.		107.0	conti	nued.
Mean	106.6	172	103.2	35	104.5	142	100.9			35 36	105°2 112°8
		173	98·9 97·1	36 38	114.9	143	113.7	122	0 <i>f. s.</i>	37	113.0
110	o f. s.	176	86.6	3S 61	129.6	209	99.1		144.5	38 43	108.9
1	135.2	236	111.2	64 66	101.3	210 211	96·3	7	116.0	61	127.3
3	122.6	Mean	105.7	67	101.2	212	87.8	10 12	121.0	62 63	106.0
14	89.6			87 88	112 [.] 8	Mear	110.0	33	130.2	64	103.7
16	93.3	1130	o f. s.	91	94.5			35 36	105.0	66 67	98.5 101.1
17 1S	108·5 96·3	Mean	107.2	93 124	135.9 112.6			37 38	113.8	94	108.4
38	112.2			139 140	100.9	119	o f. s.	30 43 61	106.0	III II2	120'4 112'3
169	98·S	114	o f. s.	141	115.8	Mear	1 109.9	61 64	127.9	124 126	112'0 111'7
171	97'9 104'1	I	133.2	142 143	101.7			66	98.7	130	105.4
173	99.7	23	94°7 125°7	174	98.5			67 87	100.2	131	107.2
174	96·2 86·6	4	115.2	20S	103°4 97'7	120	of. s.	94	109.9	133	111.2
232	118.7	16	89.7 105.7	211	116.0	2	104.2	112 124	113.4	134	117.5
233	151.0	18	94.4	212	94.1	3	123.2	120	112.5	149	113.3
235	74.5	35 38 61	104.3	Mean	1 109.9	5	96·1 104·8	131	107.9	150 152	102.1
230	113.0	61 64	130.2			35 36	114.2	133	111.5	153	102.4
238	111.3	66	104'2	117	o f. s.	37 38	114.0	134 140	102.2	166	95°2 97°1
Mea	n 107.3	67 \$8	102.2		n 110.0	61	128.5	I4I I42	98.4	218	111.9
		91	\$9.5			64	102.3	143 148	116.4	221	120.9
11	10 f. s.	93	131.6			67	100.2	140	107.0	228	118 2
	n 107'4	141	118.0	118	35 <i>f. s</i> .	86 87	94.2	150	102.6	239	92.0
		143	113·1 95·4	I	132.1	88	115.9		107.6		91.2
	n f e	172	103.5	23	100.0		106.7 SS-5	229	84.7	Mea	n 110.0
1	20 <i>f. s.</i> 134 ⁻ 1	173	97.3		105.7	94	110.9		93.3		
2	93'3	1100	n 107.6	19	1141	124	112.0	Man	n 110.1	- 12	50 <i>f. s</i> .
3	124.5			- 35	104.7		99.1				n 110.2
15	115.0		50 f.s.	38	110'3	140	107.0		30 f. s.		
16			n 109.3	61	129.0		113.0		30 J. 3.		60 f. s.
18	95'2			66	100.8	143	1151	i nico		- 6	
35	104.1	1.11	60 f. s.	87	111.1	149	112.8		40 f. s.	7	112.9
60	101.	5 1	1 1 32.8	88 91	119.7					9	
67	103	2	97:5	5 93	139.9	210	96:	2 7	114"	7 11	121.8
93			1201				99"	3 9			1 /
170	107.0	5 17	104"	140	109"	3 Mea	n 106.	3 12	122	5 34	94.0
171	1 96.0	19	114.1	1 141	115.	3		- 33	130.0	35	105.4
-											

EXPERIMENTAL VALUES OF K_v for ogival-headed projectiles. 57

Round K_{Ψ} Round K_{Ψ} Round K_{Ψ} Round K_{Ψ} Round K_{Ψ} 1260 f. s. continued. 1280 f. s. continued. 1320 f. s. continued. 1320 f. s. continued. 1340 f. s. continued. 1340 f. s. continued. 1370 f. s. continued. 36 11179 10 1178 1 1183 41 1043 144 1043 144 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>												
continued. continued. 6 1344 7 1039 continued. Mean 106'5 36 111'9 10 117'8 7 107'3 10 116'3 40 103'8 38 108'6 12 118'7 10 116'9 12 114'0 43 104'5 40 105'5 34 926 12 116'4 35 105'7 96 117'9 13'8o f.s. 62 121'0 35 105'7 38 107'3 100 110'1 43 104'3 64 104'4 37 113'5 35 107'7 38 107'3 100 110'1 43 104'3 66 97'9 38 105'3 38 107'7 44 103'1 114'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1	Round	Κv	Round	Κυ	Round	Kv	Round	Κv	Round	Ku	Round	Κ.
continued. continued. 6 1344 7 1039 continued. Mean 106'5 36 111'9 10 117'8 7 107'3 10 116'3 40 103'8 38 108'6 12 118'7 10 116'9 12 114'0 43 104'5 40 105'5 34 926 12 116'4 35 105'7 96 117'9 13'8o f.s. 62 121'0 35 105'7 38 107'3 100 110'1 43 104'3 64 104'4 37 113'5 35 107'7 38 107'3 100 110'1 43 104'3 66 97'9 38 105'3 38 107'7 44 103'1 114'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1	T 26	of.s.	T 28	of.s.	130	o f. s.	132	o f. s.	134	> f. s.	137	of.s.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	111.0	10	117.8					40	103.8	Mean	100-5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		113.2		120.8		113.4		118.8				
i_{32} i_{35}	38	108.0										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											138	o f. s.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	63	105.4	36	111.5	34		37					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			37		35							104.3
94 106'3 43 105'3 38 107'8 43 104'7 130 103'9 130 103'6 96 121'6 44 109'4 40 104'7 44 108'1 131 104'6 131 103'6 111 119'4 62 121'0 41 105'1 94 99'8 132 103'7 133 111'2 112 111'3 66 97'5 43 105'0 96 118'8 133 111'2 133 111'0 124 111'6 94 104'1 44 108'7 97 107'9 134 116'4 134 116'1 126 111'1 96 120'6 94 101'9 99 105'0 149 112'9 131 106'7 98 112'1 97 110'0 100 114'9 150 100'5 132 103'9 101 121'8 98 118'3 110 123'3 151 103'6 133 111'5 110 125'9 99 109'1 111 116'6 152 106'6 134 117'2 111 118'5 100 118'0 124 109'7 153 101'9 148 105'8 112 110'2 101 118'0 124'6 126 111'0 150 101'8 126 110'8 114 117'5 127 108'5 151 107'5 127 109'4 112 108'14 130 104'2 152 107'6 130 104'8 124 110'5 131 105'0 153 102'2 131 105'2 126 110'8 132 103'7 135'0 f.s. 164 110'2 132 103'7 127 105'8 133 111'4 135'0 f.s. 165 100'2 133 111'5 130 104'5 134 116'5 Mean 106'5 14400 f.s. 166 93'7 134 116'9 131 105'0 148 104'7 136'0 f.s. 166 93'7 134 116'9 131 105'0 148 104'7 136'0 f.s. 166 93'7 134 116'9 131 105'0 148 104'7 136'0 f.s. 166 93'7 134 116'9 131 105'0 148 104'7 136'0 f.s. 166 93'7 134 116'9 131 105'0 148 104'7 136'0 f.s. 166 93'7 134 116'9 131 105'0 148 104'7 136'0 f.s. 166 93'7 134 116'9 131 105'0 148 104'7 136'0 f.s. 140 f.s. 140 f.s. 140 103'1 44 105'5 134 116'5 133 110'9 40 103'4 41 105'3 128 111'0 150 101'5 134 116'6 151 104'5 136'0 103'4 41 105'3 128 111'0 150 101'5 134 116'6 151 104'5 136'0 f.s. 130 103'4 41 103'3 110'3 128 111'0 150 101'5 134 116'6 151 104'5 136'0 103'4 41 103'3 130 103'4 42 105'5 1220 110'7 153 101'9 150 101'1 164 108'9 41 103'8 132 103'4 133 110'4 105'5 110'2 133 110'9 100 106'4 143 132 103'4 132 103'4 132 103'4 133 110'4 133 110'4 133 110'4 133 110'4 133 110'4 133 110'4 133 110'4 133 110'4 133 110'4 133 110'4 133 110'4 133 110'4 133 110'4 133 110'4 133 110'4 133 110'4 133 110'4 1										108.3		
96121'644109440104'744108'1131104'6131103'8111119'462121'041105'19499'8132103'7132103'7124111'694104'144108'797107'9134116'4134116'1126111'196120'694101'998114'5148149'1133111'0130105'197113'196119'799105'0149112'9133'1'1'5'110'1'3'131106'798122'197110'0100'1'14'1'6'123'3151'1'03'6'103'6'133111'5110123'999'1'0'1'11'1'1'1'1'1'1'1'1'1'1'1'1'1'1'					38	107.8				103.9		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										104.6		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										103.7		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		111.0					97					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	126	111.I	96	120.6	94		98	114.2	148			
132103'9101121'898118'3110123'3151103'6133117'5110125'999109'1111116'6152106'6134117'2111118'5100118'7112105'7153101'9148105'8112110'2101118'0124109'9164107'71300 f. s.150101'8126110'8111117'5127108'5Mean 107'3Mean 105'6152107'6130104'8124110'5131105'0135'0 f. s.Mean 105'6152107'6130104'8124110'5131105'0135'0 f. s.Mean 106'51400 f. s.165100'2133110'5134116'5Mean 106'51400 f. s.40103'1165100'213313311'5150100'71360 f. s.43104'316693'7134110'9131105'0148104'7136'0 f. s.44103'116896'3149113'3133115'2100'7136'0 f. s.44103'3130103'116896'3149113'3153101'940103'4104'3131103'4170'15148105'1155'105'16593'141103'3131103'4180'10'15150'10'1152'105'5165'93'1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
133 111'5 110 125'9 99 109'1 111 116'6 152 106'6 134 117'2 111 118'5 100 118'7 112 105'7 153 101'9 164 107'7 153 101'9 164 107'7 153 107'9 164 107'7 130'7 130'7 130'7 130'7 130'7 130'7 135'7 140'7'7 110'7'7 105'7 135'7<					97	-					Mean	105.9
143105'8112110'2101118'0124109'9164107'7149113'3124111'2110124'6126111'013'1130'5'.150101'8126110'8111117'5127108'5Mean 107'3Mean 107'3151107'5127109'4112108'4130104'5Mean 107'3Mean 105'6152107'6130104'8124110'5131105'0135'0 f. s.Mean 106'5153102'2131106'2126110'8132103'7135'0 f. s.Mean 106'516693'7134116'9131105'6148104'7136'0 f. s.40103'116896'3149113'3133111'5150100'7136'0 f. s.41103'316693'7134116'6151104'5136'0 f. s.41103'3218111'0150101'1150100'1154'130'10'3'130'10'3'220119'0152107'5165'95'1155'105'9'41103'8131'10'3'221119'0153101'9150'10'1164'10'1Mean 108'9'40'10'3'4'13'10'4'3'130'10'3'1'13'10'4'1'13'10'4'1'13'10'4'1'13'10'4'1'13'10'4'1'13'10'4'1'13'10'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1'1					99	100.1		110.0		100.0		
149113:3124111:2110124:6126110'110'150101'8126110'8111117'5127108'5Mean 107'3Mean 105'6151107'5127109'4112108'4130104'2Mean 107'3Mean 105'6152107'6130104'2131105'0131105'0Mean 105'6153102'2131106'2126110'8132103'7135'0 f. s.164110'2132103'7127108'8133111'4135'0 f. s.165100'2133111'5130104'5134116'5Mean 106'5140'0 f. s.16693'7134116'9131105'6148104'740103'141108'96'3149113'3133111'5150100'7136'0 f. s.43104'3219117'0151106'4148105'1152100'7136'0 f. s.41103'8220119'0152107'5149113'3153101'9796'6127108'3221119'7153101'9150101'1164108'941103'8131103'422984'716598'8152107'316798'944106'8133110'923984'816692'1153101'9133'0 f. s.131 </td <td></td>												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									104	10/7	130	of.s.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		101.8				117.5			Mean	1 107.3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		107.5									Mican	1050
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								111.4	135	50 <i>f.s</i> .		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			133	111.2					Mean	1 106.2	140	o f. s.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	160											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	168					111.2						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			150	101.2	134				130	bo f. s.		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												105.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						101.1						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	228	124'0	164	110.5	151	105.2	165	93.1		103.8		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							167	98.9	44			
Mean 109'6 168 95'7 165 96'0 126 112'0 154 99'8 218 110'5 166 91'9 127 108'2 155 107'5 160 91'9 219 104'5 167 99'3 1330 f. s. 130 103'8 157 108'2 107'5 108'6 95'9 220 126'3 168 95'2 1330 f. s. 131 104'2 155 107'5 108'6 98'9 Mean 110'9 Mean 109'9 Mean 108'5 132 103'7 133 111'1 Mean 105'8 148 104'5 148 105'3 148 105'5 149 12'4 14'16'3 14'10'f. s. 10'10'f. s. 15'10'10'f. s. 15'10'10'f. s. 15'10'10'f. s. 15'10'10'f. s. 14'10'f. s. 14'10'f. s.	239						Mean	1 108.9				116.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mean	n 109.6	168	95.7	165							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									127	108.2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				126.3			12:	20 f. s.			157	
Mean 111'0 Mean 110'9 Mean 109'9 Itean 103'5 I 33 Iti'1 Mean 105'8 1280 f. s. 1290 f. s. 1310 f. s. 7 100'2 153 101'9 Mean 105'8 6 136'1 Mean 110'1 Mean 108'7 35 105'7 Mean 105'6 1410 f. s. 7 110'3 Mean 110'1 Mean 108'7 35 105'7 Mean 105'6	127	o f. s.									158	98.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Mar		Mag	10000	Mean			111.1	Mean	105.8
1280 f. s. 1290 f. s. 1310 f. s. 1340 f. s. 149 1124 152 1063 6 1361 1290 f. s. 1310 f. s. 7 1002 153 1019 1410 f. s. 7 1103 Mean 1101 Mean 1087 35 1057 Mean 1050 Mean 1056			Mean		Wrear				134		- Car	
1280 f. s. $1290 f. s.$ $1310 f. s.$ 152 $106'3$ 6 $136'1$ $1290 f. s.$ $1310 f. s.$ 7 $100'2$ 153 $101'9$ 7 $110'3$ Mean 110'1 Mean 108'7 35 $105'7$ Mean 106'0 Mean 105'6												
6 136.1 1290 f. s. 1310 f. s. 12 111.3 7 110.3 Mean 110.1 Mean 108.7 35 105.7 Mean 106.0 Mean 105.6		2 f c					134	10 <i>J. s.</i>		106.3		
7 110'3 Mean 110'1 Mean 108'7 35 105'7 Mean 106'0 Mean 105'6			120	no f. s.	131	o.f. s.			153	101.9	141	0 f. s.
/ HOS Mean HOI Manne 100 / 55	1				Ĭ	-			Men	106.0	Mean	105.6
			Mean	1101	Incal				1			
			Ι.		1		1		1			

Round Ko	Round Ky	Round Ky	Round Ky	Round K	Round Xv
1420 f. s. 39 105:2 40 103:0 41 102:8 43 104:2 44 104:9 116 89:6 127 108:6 127 108:6 130 103:4 131 103:1 132 102:7 133 1109 134 116:1 154 98:6 155 107:3 157 105:9 158 98:3 Mean 104:3	1.460 f. s. 39 1079 40 1033 41 1019 43 1040 44 1037 113 982 114 1048 115 982 114 1033 129 989 130 1034 132 1016 133 1109 154 966 155 1020 156 1052 157 1003 158 972	1 500 f. s. 39 107.6 40 103.8 41 101.0 43 104.0 44 102.6 113 97.3 114 102.8 115 103.4 132 100.1 145 93.2 147 90.9 155 96.7 156 95.9 157 94.4 158 96.2 Mean 98.7	1540 f. s. 39 1074 40 1044 41 1002 44 1017 113 963 114 1005 115 1040 115 1040 116 923 117 952 145 9222 146 887 155 914 155 914 156 917 157 884 158 9571 Mean 962	1580 f. s. 44 1005 113 94'3 114 98'2 115 101'8 116 92'8 117 93'1 145 91'3 146 88'7 147 90'4 154 94'9 155 86'1 156 87'5 157 81'8 158 94'1 Mean 92'5 1590 f. s. Mean 91'4	1620 f. s. continued. 470 72'0 472 87'3 Mean 88'0 1630 f. s. Mean 83'9 1640 f. s. 144 73'5 145 90'2 146 88'1 147 90'0 470 75'5 472 87'3
1430 f. s. Mean 103:4 1440 f. s. 39 108:0 40 103:2 41 102:4 43 104:1 14 105:6 116 90:1 127 108:9 130 103:4 131 102:9 132 102:2 133 110:9 154 97:6 155 104:6 155 104:6 155 104:7 157 103:1 158 97:7 Mean 103:0 1450 f. s. Mean 102:5	1470 f. s. Mean 101'1 1480 f. s. 39 107'7 40 103'5 41 101'4 43 104'0 44 103'1 113 97'8 114 104'0 116 91'0 127 109'8 129 98'9 130 103'4 132 100'9 133 110'9 133 110'9 133 10'9 133 10'9 133 10'9 133 10'9 135 99'3 155 99'3 157 97'3 158 96'7 Mean 100 8	1510 f. s. Mean 97'3 1520 f. s. 39 107'5 40 104'0 41 100'6 44 102'2 113 96'9 114 101'7 116 91'9 117 96'4 145 92'7 146 88'7 155 94'0 154 95'6 155 94'0 158 95'6 Mean 96'5 95'6 1530 f. s. Mcan 96'1	1550 f. s. Mean 95:5 1560 f. s. 40 104'7 44 101'1 113 95:5 114 99'3 115 102'9 116 92'7 117 94'0 145 91'7 146 88'7 155 88'7 155 88'7 155 88'7 155 89'6 Mean 94'3 1570 f. s. Mean 93'0	1600 f. s. 113 93'2 115 100'7 117 92'4 145 91'0 146 88'6 147 90'3 154 94'6 155 83'4 156 85'4 157 78'4 158 93'6 472 87'3 Mean 89'9 1610 f. s. Mean 1520 f. s. 115 115 99'6 145 90'7 146 \$8'3 154 94'4 155 80'7 154 94'4 155 80'3 154 94'4 155 83'3 158 93'2	Mean 84:1 1650 f. s. Mean 84:4 1660 f. s. 144 73:5 145 89:9 146 87:8 147 900 470 78:9 472 87:3 Mean 84:6 1670 f. s. Mean 84:8 1680 f. s. 144 73:5 145 89:7 146 87:6 147 89:9 470 81:1 472 86:7 Mean 84:8

EXPERIMENTAL VALUES OF K_v for ogival-headed projectiles. 59

Round X.	Round Ko	Round K	Round K _v	Round K.	Round K
Round Ne 1690 f. s. Mean 1700 f. s. 144 173 5 145 144 73 5 145 89 4 146 87 4 147 89 7 470 83 6 Mean 84 7 1710 f. s. 1710 f. s. 1720 f. s. 145 145 89 2	I770 f. s. 1770 f. s. Mean 80.7 1780 f. s. 462 91.3* 463 80.3 Mean 80.3 1790 f. s. Mean 79.9 1800 f. s. 462 92.0* 463 79.4	1860 f. s. 461 73.5 462 91.1 463 78.6 502 64.4 Mean 76.9 1870 f. s. Mean 1880 f. s. 461 75.6 89.8 463 78.6 464 75.6 465 65.8 502 64.7	Iggo f. s. 1920 f. s. continued. 477 65:1 Mean 72:8 1930 f. s. Mean 71:4 1940 f. s. 473 69:5 474 70:8 476 68:1 477 68:1 476 68:1 477 68:4 502 65:1	1980 f. s. continued. 482 62'2 497 74'5 501 59'7 502 64'3 Mean 67'4 1990 f. s. Mean 2000 f. s. 473 473 71'4 474 70'7 475 74'3 476 67'9	Round A ₂ 2030 f. s. Mean 2040 f. s. 473 73'6 474 70'7 475 74'4 476 67'7 477 70'1 478 65'2 479 66'7 481 62'6 482 63'7 491 67'4 493 68'1 497 75'0 498 71'8 499 66'4 500 72'1 501 59'7
146 87·2 470 85·4 471 71·8 472 82·7 Mean 83·3	Mean 79.4 1810 f. s. Mean 75.2	Mean 74.9 1890 f. s. Mean 73.8 1900 f. s.	Mean 68.8 1950 f. s. Mean 69.4 1960 f. s.	$\begin{array}{cccc} 477 & 70^{\circ}1 \\ 479 & 66^{\circ}8 \\ 480 & 66^{\circ}1 \\ 481 & 61^{\circ}7 \\ 482 & 62^{\circ}6 \\ 497 & 74^{\circ}7 \\ 500 & 73^{\circ}0 \\ 501 & 59^{\circ}7 \\ 502 & 63^{\circ}5 \end{array}$	502 62.6 Mean 68.0 2050 f. s. Mean 68.0
1730 f. s. Mean 82:4 1740 f. s. 462 87:6 470 87:7 471 68:5 472 81:0	1820 f. s. 461 71'3 462 92'0* 463 78'6 Mean 75'0 1830 f. s.	461 78.3 462 88.4 463 77.6 474 71.8 475 67.8 476 67.7 502 65.1 Mean 73.1	473 70°2 474 70°7 475 72°1 476 68°3 477 66°8 479 66°8 497 74°5 502 65°0 Mean 69°6	Mean 67.9 2010 f. s. Mean 67.9 2020 f. s.	2060 f. s. 473 74 ⁻⁵ 474 70 ⁻¹ 475 73 ⁻⁵ 476 67 ⁻⁷ 477 70 ⁻¹ 478 65 ⁻⁶ 479 66 ⁻³ 480 66 ⁻¹ 6 ⁻²⁰
Mean 81'2 1750 f. s. Mean 80'2 1760 f. s. 462 89'5 463 81'1 470 90'0	Mcan 75 ⁻¹ 1840 f. s. 461 72 ⁻⁰ 463 92 ^{-0*} 463 78 ⁻⁶ Mean 75 ⁻³	1910 f. s. 1920 f. s. 1920 f. s. 461 81.6 462 87.0 463 76.5 473 68.7	1970 f. s. Mean 68.7 1980 f. s. 473 70.6 474 70.7 475 73.3 476 68.3	473 72*5 474 70*7 475 74*7 476 67*7 477 70*1 479 66*8 480 65*7 481 62*2 482 63*0 497 74*9 500 72*7 501 59*7	481 63°0 482 64'6 491 67'1 493 68'4 497 75'0 498 71'6 500 71'6 501 59'4 502 62'2 Mean 68'0
471 65.7 Mean 81.6	1850 f. s. Mean 76.8	473 007 474 71.4 475 69.1 476 67.7	477 69 [·] 5 479 66 [·] 8 481 61 [·] 2	502 62.9 Mean 68.0	2070 f. s. Mean 67:9

Round	κ.,	Round Ky	Round Ky	Round Ky	Round Ky	Round Xv
473 474 475 476 477 478 479 480 481 482 490 491 492 493 497 498 499 500 501 502 Mea 209 Mea	 > f. s. 75⁻¹ 69⁻⁶ 72⁻⁵ 67⁻⁶ 69⁻⁷ 66⁻⁹ 66⁻⁹ 66⁻⁹ 66⁻⁹ 66⁻⁹ 66⁻⁹ 66⁻¹⁰ 74⁻¹⁰ 66⁻¹⁰ 74⁻¹⁰ 66⁻¹⁰ 74⁻¹⁰ 74⁻¹⁰ 75⁻¹⁰ 66⁻¹⁰ 75⁻¹⁰ 66⁻¹⁰ 75⁻¹⁰ 66⁻¹⁰ 75⁻¹⁰ 66⁻¹⁰ 75⁻¹⁰ 66⁻¹⁰ 75⁻¹⁰ 66⁻¹⁰ 75⁻¹⁰ 75⁻¹⁰ 66⁻¹⁰ 75⁻¹⁰ 75⁻¹⁰ 66⁻¹⁰ 75⁻¹⁰ 75⁻¹⁰ 75⁻¹⁰ 66⁻¹⁰ 75⁻¹⁰ /ul>	2110 f. s. Mean 66.6 2120 f. s. 473 76.9 474 69.5 475 69.5 475 69.5 476 66.9 477 69.0 478 66.2 479 66.2 480 66.2 480 66.2 481 64.2 482 67.4 490 61.5 493 69.2 494 66.4 495 58.6 497 74.5 498 71.3 499 66.6 500 71.2 501 58.3 Mean 66.9	2140 f. s. continued. 498 71'3 499 66'9 500 71'0 501 58'0 2150 f. s. Mean 66'3 2160 f. s. 478 478 66'8 479 66'2 480 65'6 480 65'6 491 67'3 492 58'3 493 69'8 494 65'3 495 57'9 497 74'3 498 71'3 499 67'2 500 70'7 500 70'7 500 70'7 500 70'7	2180 f. s. continued. 498 71'3 499 67'4 500 70'5 501 58'0 Mean 65'8 2190 f. s. Mean 478 66'1 479 66'8 480 65'6 481 65'6 482 69'9 490 60'9 491 68'1 492 58'8 493 70'3 494 64'2 495 56'7 496 71'2 499 67'5 500 70'8 501 58'0	2220 f. s. continued. 499 67:5 500 71:1 501 58:0 Mean 65:9 2230 f. s. Mean 65:8 2240 f. s. 480 65:3 482 69:7 490 60:3 493 70:7 494 63:1 493 70:7 494 63:1 495 55:1 495 55:1 497 73:3 498 70:8 499 67:7 500 71:6 501 58:0 Mean 65:8	2270 f. s. Mean 65.5 2280 f. s. 490 60.9 491 70.8 492 61.1 493 70.7 494 62.1 495 53.8 497 72.9 498 69.9 499 68.0 500 72.3 Mean 66.3 2200 f. s. Mean 65.5 2300 f. s. Mean 65.5 2300 f. s. 490 61.1 491 71.5 492 61.4 493 70.7 494 61.8 495 52.6 495 52.6
475 476 477 478 479 480 481 482 490 491 492 403 404 495 407 408 409 500 501 502	69'51 71'12 69'4 66'22 65'8 63'8 64'8 64'8 64'8 64'8 64'8 64'9 57'3 64'8 64'9 57'3 64'9 74'6 71'3 65'9 74'6 74'6 64'2 55'9 74'6 64'2 64'2 64'2 65'8 64'2 64'	2130 f. s. Mean 66.3 2140 f. s. 474 69.5 475 68.8 476 66.5 477 68.7 478 66.4 479 66.2 480 65.8 481 64.5 482 68.2 490 61.2 490 61.2 491 67.0 492 58.0 493 69.5 494 65.9 495 58.2 497 74.5	S01 1 500 Mean 66·0 2170 f. s. Mean 65·9 2180 f. s. 478 66·4 479 66·5 481 65·3 482 69·6 490 60·6 491 67·5 492 58·6 493 70·0 494 64·8 495 57·4 497 74·0	Mean 65.9 2210 f. s. Mean 65.9 2220 f. s. 478 65.7 479 66.4 480 65.6 481 66.0 482 69.9 490 61.0 491 68.6 492 59.4 493 70.5 494 63.6 495 55.7 497 75.7 497 75.7 497 75.7 498 71.1	2250 f. s. Mean 65.8 2260 f. s. 482 69.3 490 60.7 491 70.1 492 60.6 493 70.7 494 62.6 495 54.8 497 73.1 498 70.4 499 68.0 500 72.1 501 58.0 Mean 65.9	499 67.7 500 72.6 Mean 65.4 2310 f. s. Mean 65.4 2320 f. s. 490 61.1 491 71.9 492 61.6 493 70.7 494 61.5 495 51.6 498 69.0 499 67.5 Mean 64.4

EXPERIMENTAL VALUES OF K_v FOR OGIVAL-HEADED PROJECTILES. 61

		1			1	1	1
v	Experimental values of Ky	Correc- tions	Corrected values of	v	Experimental values of Ky	Correc- tions	Corrected values of K_{y}
J.s.				f.s.			
430	130.6	+ 10.1	140.7	775	81.9	- 3.8	78.1
435	133.6	+ 5.2	139.1	780	80.3	- 2.2	77.6
440	133.6	+ 3.9	137.5	785	75.6	+1.2	77.1
465	129.9	+0.5	130.1	790	69.7	+6.9	76.6
470	130.0	- 1·9 + 7·3	128.7	795 800	74.6 62.1	+1.2	76.1
475	1201	-6.0	127'4 114'2	805	61.0	+ 13.5	75 [.] 6 75 [.] 1
535	118.8	- 5.7	113.1	810	61.1	+132	74.6
540	112.6	-0.6	112.0	815	57.9	+16.3	74.2
545	107.2	+ 3.8	111.0	820	67.0	+6.0	73.9
550	102.8	+7.2	110.0	825	74°3	- 0.6	73.7
555	101.2	+7.5	100.0	830	74.7	- 1.1	73.6
560	98.1	+9.9	108.0	835	74'9	- 1.3	73.6
565	99°5	+7.6	107.1	840	72.2	+1.4	73.6
570 575	98.6	+ 5.6 + 6.6	105.2	845 850	74.5	-0.0	73.6
580	99.7	+4.6	103 2	855	69.6	+ 3.6 + 4.0	73 [.] 6 73 [.] 6
585	102.6	+0.8	103.4	860	67.0	+6.6	73.6
590	100.0	+1.0	102.5	865	66.1	+ 7.5	73.6
595	112.9	- 11.5	101.7	870	63.1	+ 10.5	73.6
600	100.0	+0.5	100.8	875	62.4	+11.5	73.6
605	113.2	- 13.5	100.0	880	64.9	+ 8.2	73.6
650 655	95°5 96°5	- 2·4 - 4·1	93.1	885	75.3	- 1.2	73.6
660	97.7	- 6.0	92.4 91.7	890 895	72'9 74'I	+0.2	73.6
665	99.6	- 8.6	91.0	900	81.9	-8.3	73 ^{.6}
670	99.9	- 9.6	90.3	905	79.8	-6.3	73.6
675	100.1	- 10.2	89.6	910	81.0	-8.3	73.6
6So	98.6	- 9.6	89.0	915	80.2	- 6.6	73.6
685 690	97°5 96°4	- 9.2	88.3	920	78.4	- 4.8	73.6
695	90.4	- 3.7	87·7 87·0	925	75.6	- 2.0	73.6
700	86.7	-0.3	86.4	930 935	75°9 71°1	- 2·3 + 2·5	73 [.] 6 73 [.] 6
705	84.9	+0.0	85.8	935	69.9	+2.5	73.6
710	S1.1	+4.1	85.2	945	75.9	-2.3	73.6
715	80.2	+4'4	84.6	950	77.3	- 3.7	73.6
720	82.6 81.0	+1.4	84.0	955	75.9	- 2.3	73.6
725	SI'I	+2.4 +1.8	83.4	960	73.1	+0.2	73.6
735	77.2	+ 1.9	82.9 82.3	965	75.5	- 1.0	73.6
740	77'3	+4.5	81.8	970	73.3	+0.3	73.6
745	780	+ 3.2	81.5	975 980	73.9	+0.3	73 [.] 6 73 [.] 6
750	83.0	- 2.3	So.7	985	72.9	+0.7	73.6
755	83.2	- 3.1	80.1	990	74.6	- 1.0	73.6
765	83.5	- 3.9	79.6	995	74.8	- 1'2	73.6
770	\$5.5 84.6	-6.4	79'1	1000	74'5	-0.0	73.6
115	040	-00	78.6	1005	73.8	-0.5	73.6
					Street, Street		and the second se

77. Corrected mean values of K_v for Ogival-headed Projectiles. (w = 534.22 grains.) Cubic Law.

	Experimental		Corrected		Experimental		Corrected
v	values of	Correc- tions	values of	v	values of	Correc-	values of
	Ku	tions	K _v		Kv	tions	K_v
f.s.				<i>f.s.</i>			
IOIO	74.2	-0.4	73.8	1410	105.6	- 1.0	104.6
1015	73.9	+0.5	74°I	1420	104.3	-0.3	104.0
1020	73.4	+ 1.5	74.6	1430	103.4	0	103.4
1025	75.6	-0'2	. 75.4	1440	103.0	-0.5	102.8
1030	76.1	+0.2	76.6	1450	102.2	-0.4	102.1
1035	81.0	- 2.6	78.4	1460	101.0	-0.2	101.4
1040	83.2	-29	80.8	1470	IOI.I	-0.4	100.2
1045	89.6	- 5.8	83.8	1480	100.8	-0.0	99.9
1050	90.0	- 3.6	87.3	1490	99.6	- 0°4	99.2
1055	91.6	- 0.8	90.8	1500	98.7	-0.3	98.4
1060	92.2	+ 1.8	94.0	1510	97.3	+0.4	97.7
1065	92.5	+4'I	96.6	1520	96.2	+0.3	96.8
1070	104.2	- 5.8	98.7	1530	96.1	0	96.1
1080	105.2	- 3.0	102.2	1540	96.2	- 0.8	95'3
1090	106.6	- 1.2	104.9	1550	95.2	- 1.0	94.5
1100	107.3	- 0.4	106.0	1560	94'3	- 0.6	93.7
1110	107.4	+1.0	108.4	1570	93.0	- 0, I	92.9
1120	105.2	+3.2	109.2	1580	92.2	-0.4	92.1
1130	107.2	+2.4	109.6	1590	91.4	-0.I	91.3
1140	107.6	+ 2.0	109.6	1600	89.9	+0.6	90.2
1150	109.3	+0.3	109.6	1610	88.9	+0.0	89.8
1160	109.9	-0.3	109.6	1620	88.0	+ 1.1	89.1
1170	110.0	-0.4	109.6	1630	83.9	+4.2	88.4
1180	110.0	-0.4	r09.6	1640	84.1	+3.6	87.7
1190	109.9	-0.3	109.6	1650	84.4	+2.6	87.0
1200	106.0	+2.7	109.6	1660	84.6	+ 1.2	86.3
I2I0 I220	107.0 110.1	+ 2.6	109.6	1670 1680	84.8	+0.8	85 ^{.6} 84.9
-	110.1	-0.2	109.6		84.8	-0.0 +0.1	84.2
1230 1240	110.0	-0.2	100.0	1690 1700	84·8 84·7	- 1.5	04 2 82.r
1240	110.0	- 0°4 - 0°6	109.0	1710		-0.0	83·5 82·8
1250	109.6	0	109.0	1710	83.7 83.3	- 1.5	82.1
1200	111.0	-1.4	109.0	1720	82.4	-0.0	81.2
12/0	110.0	-1.3	109.0	1730	81.2	-0'3	80.9
1200	110.1	-0.2	109.6	1750	80.2	+0.1	80.3
1300	109.9	-0.2	109.4	1760	81.6	- 1.0	79.7
1310	109.9	+0.4	109.1	1770	80.7	- 1.2	79.2
1320	108.0	-0.1	108.8	1780	80.3	- 1.2	78.6
1330	108.5	0	108.2	1790	79'9	- 1.0	78.0
1340	107.3	+0.8	108.1	1800	79.4	- 2.0	77.4
1350	106.2	+1'2	107.7	1810	75.2	+1.6	76.8
1360	106.0	+1.5	107'2	1820	75.0	+1.5	76.2
1370	106.2	+0.3	106.8	1830	75.1	+0.6	75.7
1380	105.9	+0.4	105.3	1840	75.3	- 0' I	75.2
1390	105.6	+0.2	105.8	1850	76.8	- 2,*I	747
1400	105.8	- 0.6	105.2	1860	76.9	- 2.6	74'3
	V				1		

Corrected mean values of K_v for Ogival-headed Projectiles—(cont.).

Z! J. s.	Experimental values of K _v	Correc- tions	Corrected values of Ky	U f. s.	Experimental values of K _v	Correc- tions	Corrected values of \mathcal{K}_{v}
J. s. 1S70 1S80 1900 1910 1920 1910 1920 1940 1950 1960 1970 1920 1940 1950 1960 1970 2020 2030 2040 2050 2050 2050 2100 2130 2140 2150 2160 2170 22200 2230 2240 2250 2250 2250 2250 2250 2300 2310 2320 2310 2320	77'0 74'9 73'8 73'1 72'5 72'8 71'4 69'4 69'4 69'4 69'4 69'4 69'4 69'4 69	$\begin{array}{c} -3^{\circ}2 \\ -1^{\circ}6 \\ -1^{\circ}0 \\ 9 \\ -0^{\circ}8 \\ -1^{\circ}6 \\ +0^{\circ}6 \\ -0^{\circ}6 \\ +0^{\circ}1 \\ -0^{\circ}6 \\ +0^{\circ}1 \\ +0^{\circ}3 \\ +0^{\circ}3 \\ +0^{\circ}1 \\ -0^{\circ}1 \\ -0^{\circ}7 \\ -0^{\circ}7 \\ -0^{\circ}9 \\ -1^{\circ}2 \\ -0^{\circ}7 \\ -0^{\circ}7 \\ -0^{\circ}2 \\ -0^{\circ}7 \\ -0^{\circ}7 \\ -0^{\circ}2 \\ -0^{\circ}7 \\ -0^{\circ}7 \\ -0^{\circ}2 \\ -0^{\circ}7 \\ -0^{\circ$	73.8 73.3 72.2 71.7 71.2 70.8 70.0 69.6 69.3 69.0 69.6 69.3 69.0 69.6 69.3 69.0 69.6 69.3 69.0 69.6 69.3 69.0 69.6 67.5 67.5 67.5 67.5 67.5 67.5 67.5 67	J. s. 2330 2340 2360 2370 2380 2370 2380 2370 2380 2370 2380 2370 2380 2370 2380 2370 2400 2410 2420 2440 2450 2500 2500 2500 2500 2540 2550 2560 2560 2560 2560 2560 2560 2560 2610 2620 2640 2650 2660 2660 2660 2660 2660 2660 2700 2720 2740 2740 2700 2700 2740 <	62-8 62-8 62-8 62-8 62-8 60-5 56-7 58-4 55-2 53-0 53-0 53-0 51-9 51-3 51-4 51-4 51-5 51-5 51-5 51-5 51-7 51-5 51-7 52-0 52-0 52-0 52-0 52-0 52-0 52-0 52-0	$\begin{array}{c} -2^{*1} \\ -0^{*7} \\ -3^{*1} \\ -1^{*9} \\ -1^{*3} \\ +2^{*1} \\ +2^{*3} \\ +2^{*1} \\ +2^{*3} \\ +2^{*2} \\ +2^{*2} \\ +1^{*7} \\ +1^{*4} \\ +1^{*0} \\ +0^{*2} \\ +2^{*2} \\ +1^{*7} \\ +1^{*4} \\ +0^{*2} \\ -0^{*1} \\ -0^{*3} \\ -1^{*3} \\ -1^{*9} \\ +0^{*4} \\ +0^{*1} \\ -0^{*1} \\ -0^{*1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	60.7 60.2 59.7 59.1 58.6 58.0 57.5 57.0 56.5 55.5 56.0 55.5 56.0 55.5 54.7 54.7 54.7 54.3 53.9 52.7 52.3 52.9 52.7 52.3 52.2 52.0 51.8 51.4 51.4 51.4 51.4 51.4 51.4 51.4 51.4

Corrected mean values of K_v for Ogival-headed Projectiles—(cont.).

Round	<u>አ</u> -	Round	Κ.υ	Round	K_v	Round	K_v	Round	Kv	Round	Kv
164	o <i>f. s</i> .	168	o f. s.	1720 f. s.		176	o f. s.	180	o f. s.	1840 <i>f. s</i> .	
467 468 469	106°4 127°2 113°1	467 468 469	106•4 123·6 114•2	467 468 469	106'4 119'4 113'9	464 468 469	106'4 112'0 113'9	467 468 469	106°4 100°8 113°4	467 468 469	105.9 89.0 113.1
Mean	115.6	Mean	114.7	Mean	113.2	Mean	110.8	Mear	106.9	Mear	102.7
165	o f. s.	169	o <i>f.s.</i>	173	o f. s.	177	o f. s.	181	o f. s.	185	0 <i>f. s</i> .
-	115.3		114.3		112.7		109.9	100	106.0	-	101.6
166	0 <i>f. s</i> .	170	o <i>f. s</i> .	174	0 <i>f. s.</i>	178	o f. s.	182	o f. s.	186	o f. s.
467 468 469	106°4 125°4 113°1	467 468 469	106·4 121·7 113·9	467 468 469	106.4 116.0 113.9	467 468 469	106·4 107·0 113·9	467 468 469	106.4 94.8 113.4	467 468 469	105.6 83.4 113.1
Mean	115.0	Mean	114.0	Mean	112.1	Mean	109.1	Mean	104.9	Mear	100.7
167	o <i>f. s</i> .	171	o <i>f. s.</i>	175	o f. s.	170	o f. s.	181	o f. s.	187	o f. s.
-	115.1	10.0	113.6		111.2				103.7		in 99.6

78. Report dated July 8, 1879.

79. Corrected mean values of K_v for Projectiles with Hemispherical Heads. ($\omega = 534.22$ grains.)

Vel. <i>f. s.</i>	$\frac{\text{Mean}}{K_v}$	Correc- tion	$\begin{array}{c} \operatorname{Corrected} \\ K_v \end{array}$	Vel. <i>f. s</i> .	Mean K _v	Correc- tion	$\begin{array}{c} \text{Corrected} \\ K_{\mathcal{V}} \end{array}$
1100	132.6	+0'4	133.0	1730	112.7	0	112.76
1110	133.2	-0'2	133.0	1740	112'1	0	112.1
I I 20	133.7	-0.7	133.0	1750	111.2	+ •I	111.47
1130	134.3	- 1.3	133.0				'
				1760	110.8	"I	110.78
1140	134'9	- 1 .0	133.0	1770	109.9	0	109.0
1150	132.1	+0.0	1330	1780	100.1	I	109.0 - 1.0
1160	130.5	+28	133.0				
				1790	108.0	0	108.0 - 1.0
1640	115.0	0	115.62	1800	106.0	+-1	
1650	112.3	+.I	115.42	1810	106-0	0	100.0 - 1.1
1660	112.0	+ '2	115'2 2				
				1820	104.9	0	104'9 - 1'1
1670	112.1	- . I	115.03	1830	103.2	+.1	103.8 - 1.1
1680	114.2	0	$115^{0} - 3$ $114^{7} - 3$	1840	102.2	0	102'7 - 1'1
1690	114.3	+.I	114.44	- 0			
				1850	101.6	0	101.6 - 1.0
1700	114.0	0	114'0 - '4	1860	100'7	1	<u>100.6</u> - 1.0
1710	113.0	0	113.64	1870	99.6	0	990
1720	113.5	0	113.2 - 4				
		1			1		

В.

5

Round Ky	Round Ku	Round Kv	Round Ky	Round Ky	Round Kv
1530 f. s. Mean 173.7	1590 <i>f. s.</i> Mean 176.1	1650 <i>f. s.</i> Mean 173 [.] 4	1710 <i>f.s.</i> Mean 172.7	1770 <i>f. s.</i> Mean 171 ^{.2}	1830 <i>f.s.</i> Mean 168.4
1 5 40 <i>f. s.</i> 465 1860	1600 f. s. 464 165.4 465 182.9	1660 f. s. 464 165.4 465 178.9	1720 f. s. 464 165.4 465 174.6	1780 f. s. 464 166.0 465 171.9	1840 <i>f. s.</i> 464 166 ^{.2} 465 170 ^{.0}
466 162-1 Mean 174-1	465 1029 466 170.0 Mean 172.8	466 175.8 Mean 173.4	466 177.7 Mean 172.6	466 175.0 Mean 171.0	466 166 [.] 5 Mean 167 [.] 6
1550 f. s. Mean 174'5	1610 f. s. Mean 1730	1670 f. s. Mean 173 [.] 3	1730 <i>f. s.</i> Mean 172 [.] 4	1790 <i>f.s.</i> Mean 170 [.] 5	1850 <i>f.s.</i> Mean 166.7
1560 f. s. 465 185°1 466 164°6 Mean 174°9	1620 f. s. 464 165 ⁴ 465 181 ⁵ 466 172 ⁵	1680 f. s. 464 165 ^{.4} 465 177 ^{.2} 466 177 ^{.0}	1740 <i>f. s.</i> 464 165 [.] 4 465 173 [.] 5 466 177 [.] 3	1800 f. s. 464 166 ² 465 171 ² 466 172 ⁴	1860 f. s. 464 166 [.] 2 465 169 [.] 7 466 161 [.] 2
1570 f. s. Mean 175'3	Mean 173 ^{.1} 1630 f. s. Mean 173 ^{.2}	Mean 173 ^{.2} 1690 f. s.	Mean 172.1 1750 f. s.	Mean 169.9 1810 f. s.	Mean 165.7
1580 f. s.	1640 f. s. 464 165.4	Mean 173.1 1700 f. s. 464 165.4	Mean 171.8 1760 f. s. 464 165.6	Mean 169.4 1820 f. s. 464 166.2	
465 184.2 466 167.1 Mean 175.7	465 180.3 466 174.2 Mean 173 3	465 175.7 466 177.7 Mean 172.9	465 172.7 466 176.2 Mean 171.5	465 170.5 466 169.9 Mean 168.9	

80. Report dated July 8, 1879.

		· · · · · · · · · · · · · · · · · · ·							
	Vel. <i>f.s.</i>	Mean K _v	Correc- tion	$\frac{\text{Corrected}}{K_{\psi}}$	Vel. <i>f. s.</i>	$\frac{\mathrm{Mean}}{K_v}$	Correc- tion	$\frac{\text{Corrected}}{K_{\mathcal{V}}}$	
	1530 1540 1550	173°7 174°1 174°5	+0.6 +0.3 -0.1	$174^{\cdot}3 + 1$ $174^{\cdot}4^{\cdot}0$ $174^{\cdot}4 + 1$	1710 1720 1730	172'7 172'6 172'4	0 0 0	$ \begin{array}{r} 172.7 \\ 172.6 \\ 172.4 \\ -3 \end{array} $	
	1560 1570 1580	174'9 175'3 175'7	-0.4 -0.8 -1.3	174'5 174'5 - 1 174'4 - 1	1740 1750 1760	172°1 171°8 171°5	0 0 0	172'1 171'8 - 3 171'5 - 3	
•	1590 1600 1610	176·1 172·8 173·0	- 1.8 + 1.4 + 1.1	$174^{\circ}3 - 1$ $174^{\circ}2 - 1$ $174^{\circ}1 - 1$	1770 1780 1790	171°2 171°0 170°5	0 - 0.1 0	$171^{2} - 3$ $170^{2} - 3$ $170^{2} - 4$ $170^{2} - 5$	
	1620 1630 1640	173°1 173°2 173°3	+0'9 +0'7 +0'4	174'0 - 1 173'9 - 2 173'7 - 1	1800 1810 1820	169'9 169'4 168'9	0 +0.1 +0.1	170°0 - 5 169°5 - 6 168°9 - 6	
	1650 1660 1670	173'4 173'4 173'3	+0'2 +0'1 0	$173^{6} - 1$ $173^{5} - 2$ $173^{3} - 1$	1830 1840 1850	168·4 167·6 166·7	+0.1 0 -0.1	168·3 - 7 167·6 - 7 166·8 - 9	
	1680 1690 1700	173°2 173°1 172°9	0 +0.1 0	173 ^{•2} - 2 173 ^{•0} - 1 172 ^{•9} - 2	1860	165.7	+0.5	165.9	•

81. Corrected mean values of K_v for Projectiles with Flat Heads. ($\omega = 534.22$ grains.)

CHAPTER IV.

DESCRIPTION AND USE OF THE GENERAL TABLES S_v and T_v .

82. It will be found sufficient for many practical purposes to neglect the effect of gravity and treat the motion of a projectile as if its path was a *straight line*. This will suffice for experimental purposes when it is desired to find the loss of velocity, or the time of flight over a *limited range*, the muzzle velocity being high and the elevation of the gun being small.

In calculating these general tables, for convenience the action of the air upon the projectile has been treated as an *accelerating* force, instead of a retarding force, because the results derived from the use of the Tables are the same in both cases, and the use of proportional parts is more simple in the case of an accelerating force, for then the time, space, and velocity all increase or decrease together.

83. The equation of motion when the accelerating force varies as the square of the velocity, is

$$v \frac{dv}{ds} = 2cv^2,$$

 $\log_v v = 2cs + C,$

or, integrating, and supposing, when

$$v = 0, \quad t = 0, \quad v = V.$$

 $\log_{v} \frac{v}{v} = 2cs,$

then

or

for

$$2c = 2bv = K \frac{d^2}{w} \frac{v}{(1000)^3} = \left(K \frac{v}{1000}\right) \frac{d^2}{w} \left(\frac{1}{1000}\right)^2$$
$$= k \frac{d^2}{w} \left(\frac{1}{1000}\right)^2 \text{ suppose.}$$

For velocities of ogival-headed shot below 820 f. s., k = 60.5, which gives

$$\frac{d^2}{w}s = 38059 \log_{10}\left(\frac{v}{V}\right),$$

and for velocities of spherical shot below 840 f. s., k = 118.3, which gives

$$\frac{d^2}{w}s = 19464 \log_{10}\left(\frac{v}{V}\right).$$

84. Again

$$\frac{d^2s}{dt^2} = \frac{dv}{dt} = 2cv^2,$$

and integrating

$$\frac{1}{V} - \frac{1}{v} = 2ct,$$

or

$$\frac{d^2}{w}t = \frac{1}{2c}\frac{d^2}{w}\left(\frac{1}{V} - \frac{1}{v}\right) = \frac{1000}{k}\left(\frac{1000}{V} - \frac{1000}{v}\right)\dots\dots(2).$$

85. The equation of motion, when the accelerating force varies as the *cube* of the velocity, is

$$v \frac{dv}{ds} = 2bv^3$$
,

and integrating

$$\frac{1}{V} - \frac{1}{v} = 2bs,$$

 $\frac{d^2}{w}s = \frac{1}{2b}\frac{d^2}{w}\left(\frac{1}{V} - \frac{1}{v}\right) = \frac{(1000)^2}{K}\left\{\left(\frac{1000}{V}\right) - \left(\frac{1000}{v}\right)\right\}\dots(3).$

or

86. Again
$$\frac{d^2s}{dt^2} = \frac{dv}{dt} = 2bv^3$$
.

Integrating $\frac{1}{2V^2} - \frac{1}{2v^2} = 2bt$

$$\frac{d^2}{w}t = \frac{1}{4b}\frac{d^2}{w}\left(\frac{1}{V^2} - \frac{1}{v^2}\right) = \frac{500}{K}\left\{\left(\frac{1000}{V}\right)^2 - \left(\frac{1000}{v}\right)^2\right\} \dots \dots (4).$$

Also, since	$\frac{1}{V} - \frac{1}{v} = 2bs,$
therefore	$\frac{dt}{ds} = \frac{1}{V} - 2bs,$
and integrating	$t = \frac{s}{V} - bs^s(5),$

In calculating general tables formulæ (1) and (2), or (3) and (4) may be used so long as k or K respectively remain constant. But when k, or K varies with the velocity, its value will require to be often changed, so that k_v or K_v may be supposed to remain constant through a change of velocity, say from (v-5) to (v+5) f.s. Intermediate values can afterward be found by interpolation. In this way General Tables XXIII. to XXVI. have been calculated.

87. The velocity of a projectile is generally found by measuring the time t in seconds occupied by the projectile in passing over a range of s feet, and dividing the number of feet by the number of seconds, the velocity in feet per second at the middle point of the range is approximately found in general. But where the accelerating or retarding force varies as the *cube* of the velocity, this is exactly true. For

$$\frac{1}{v} = \frac{1}{V} - 2bs,$$

and if v' be the velocity of the projectile at the distance $\frac{1}{2}s$, then

$$\frac{1}{v'} = \frac{1}{V} - bs.$$

But the measured velocity

 $= \frac{\text{space in feet}}{\text{time in seconds}}$ $= \frac{s}{\frac{s}{V} - bs^2} = \frac{1}{\frac{1}{V} - bs} = v'$

= the velocity at the middle point of the range s.

88. Special tables of remaining velocities were given for elongated projectiles with various forms of heads in my Report of 1866⁴; also for 7, 8 and 9-inch ogival-headed projectiles in the Report of 1868³; and for all the service spherical projectiles in the Report of 1869³; and also for ogival-headed projectiles fired from all the Service guns⁴.

89. Suppose we have two projectiles of similar external forms, whose diameters are d, d'; and weights w, w' respectively. Then by equation (3), we have

$$\frac{d^2}{w}s = (1000)^3 \int^v \frac{dv}{Kv^2} = \frac{d'^2}{w'}s',$$

for K, v, and V are the same for both projectiles. Hence if we have calculated a table of ranges s', in which a projectile (d', w') loses any given velocity, from this table we can calculate the range s, in which another *similarly shaped* projectile (d, w) will lose the same given velocity, for then

$$s = s' \frac{d'^2}{w'} \div \frac{d^2}{w} \,.$$

This led me in the first instance to calculate general tables where $\frac{d'^2}{w'} = 1$, which were first published in 1871 for both spherical and ogival-headed projectiles⁵.

In the same way it may be shown that

$$t=t'\,\frac{d'^2}{w'}\div\frac{d^2}{w}\;.$$

The corresponding General Tables were first published in 18726.

90. The variation in the density of the air must greatly affect the motion of projectiles, as the resistance of the air is assumed to vary as its density. As already explained the coefficients for both elongated and spherical projectiles have now been calculated for such a density that one cubic foot of dry air would weigh 534.22 grains. This change has had the effect of increasing the values of K given in the Report of 1868 by about 0.7 per cent. It is evident that, when any calculation of an experiment has to be made by the tables and methods given in this work, it will be

¹ Reports, &c. 1865-1870, p. 15. ² Ib. pp. 49, 50. ³ Ib. p. 116.

⁴ Remaining velocities, &c. 1871, and Proceedings of the R. A. Inst. vii. p. 337.

⁵ Remaining velocities, pp. 47, 48, and Proceedings of the R. A. Inst. vii. pp. 391, 392. ⁶ Ib. viii. p. 4.

necessary to introduce corrections in order to adapt the results obtained to the density of the air on the day of that experiment.

91. Those who use French measures generally adopt as their standard, such a density of the air that one cubic metre of dry air would weigh 1.206 kil., which gives the weight of a cubic foot of air 526.94 grains, or nearly 527 grains. Hence it appears that the English coefficients ought to be numerically 1.37 per cent. greater than the French coefficients; while the English coefficients of 1868 would exceed the French by about 0.7 per cent. But when a proper correction has been introduced to adapt the tables to the density of the air on any particular day then the results arrived at ought to be the same, whatever be the table made use of.

92. The corrections of the coefficients k and K, for the density of the air, are applied as follows. On any particular day, the weight of a cubic foot of air is easily found from Glaisher's Tables, when observations have been made with the Barometer and with the dry and wet bulb Thermometers. Suppose that τ denotes the weight in grains of a cubic foot of air on that day, divided by 534.22 the standard weight in grains, then τ will be a constant for that round, provided the shot does not rise high enough to have its resistance sensibly affected by the diminishing density of the air. As k and K vary as the density of the air, they will have the values τk and τK adapted to the density of air on that particular day. By formula (4) we have

$$\frac{dt}{dv} = \frac{1}{2bv^3},$$
$$\frac{d^3}{w}t = (1000)^3 \int^v \frac{dv}{K_v v^3} = T_v - T_v$$

or

= difference of two tabular numbers.

But on the day above referred to every value of K_v must be replaced by τK_v , where τ is constant, and K_v is generally variable, then

$$\frac{d^{s}}{w}t = (1000)^{s} \int_{-\infty}^{V} \frac{dv}{\tau K_{v}v^{3}} = \frac{(1000)^{s}}{\tau} \int_{-\infty}^{v} \frac{dv}{K_{v}v^{s}},$$

$$\tau \frac{d^{s}}{w}t = (1000)^{s} \int_{-\infty}^{v} \frac{dv}{K_{v}v^{s}} = T_{v} - T_{V}$$

or

= difference of the same tabular numbers as before. And in the same way it may be proved that

$$\tau \frac{d^2}{w} s = \text{difference of tabular numbers}$$

= $S_v - S_V$.

93. Suppose now a change to be made in the *form* of the head of an elongated shot, and that it is found by experiment that it is necessary for this particular form of head to change the values of K obtained from experiments made with ogival-headed shot 'struck with a radius of one diameter and a half to κK , where κ is constant.

Further, suppose that we are experimenting with a gun that gives a degree of steadiness different from that of the average of the experimental guns, so as to require coefficients σK to be used instead of K, where σ is a constant.

Then as before, we shall find

τκσ
$$\frac{d^2}{w}t = T_v - T_V,$$

τκσ $\frac{d^2}{w}s = S_v - S_V.$

and

In order to introduce these corrections into the results obtained by the use of the General Tables, or into the calculation of trajectories, we have only to find the value of $\tau \kappa \sigma \frac{d^2}{w}$ and use that value instead of $\frac{d^2}{w}$.

94. A table has been calculated so that, on referring to it with the readings of the Barometer and Thermometer, the value of $\log \tau$ can be obtained directly on the supposition that the air is $\frac{2}{3}$ ds saturated with moisture with sufficient exactness for all practical purposes¹. In calculating this Table xx., the weight in grains of a cubic foot of air $\frac{2}{3}$ ds saturated with moisture, under a pressure of 29 inches of mercury, was found by Glaisher's Tables for each degree of temperature. Each of these numbers was divided by 534.22 the number of grains in the weight of the standard cubic foot of air,

¹ Proceedings of the R. A. Inst. xIII. p. 348.

73

and the resulting values of τ were adapted to heights 15 to 31 inches of the barometer.

95. Table XXI. gives the values of $\log \tau$ corresponding to various heights. In calculating this table the simple formula

$$z = c' \log \frac{h}{h'}$$

was made use of, where h denotes the height of the barometer in inches at the lower station, h' that at the upper station, and z the difference in feet of the vertical heights of the two stations. Here the force of gravity, and the temperature of the air are supposed constant. The table has been calculated in the following manner.

$$\log \tau = \log \frac{h'}{h} = -\frac{z}{c'}$$
$$= N - \frac{100 \times n}{c'} = 0.0729 - \frac{100 \times n}{64110} = 0.0729 - 0.00156n;$$
$$n = 0, \ \log \tau = 0.0729; \ n = 1, \ \log \tau = 0.0729 - 0.00156 = 0.07134;$$
$$n = 2, \ \log \tau = 0.0729 - 0.00156 \times 2 = 0.06978, \ \&c., \ \&c.$$

96. From readings of the barometer, &c. the value of $\log \tau$ is found by Table xx. at the place of observation. On referring to Table XXI. suppose this value of $\log \tau$ is found opposite the height *H* feet; then the tabular number found opposite H + z feet, will be the approximate value of $\log \tau$ at a place *z* feet higher than the place of observation. Table XXI. may be used when French measures are employed, if the heights expressed in feet in the table are converted into metres.

97. The resistance of the air to a projectile of weight w and d inches in diameter moving with the velocity v is equal to

$$2b\frac{w}{g}v^{\mathfrak{s}} = \frac{K}{g}d^{\mathfrak{s}} \left(\frac{v}{1000}\right)^{\mathfrak{s}}.$$

In this way Table XXII. has been calculated for spherical and ogival-headed projectiles.

98. General tables have been calculated to connect velocity and range, and velocity and time of flight for both spherical and ogival-headed projectiles. See Tables XXIII. to XXVI. Similar tables for French measures have also been given. See Tables XXX. to XXXIII. In the latter case we denote the diameter of the shot in centimetres by a; its weight in kilogrammes by p, and the force of gravity by g metres per second.

EXAMPLES OF THE USE OF THE GENERAL TABLES.

99. (1) Suppose it was asked in what range and time an 11.52-inch ogival-headed shot weighing 600 lbs. would have its velocity reduced from 1420 to 1250 f.s. Here

$$d^2 \div w = (11.52)^2 \div 600 = 0.2212.$$

Let s denote the required range, and t the time of flight, then

$$(\omega = 534.22 \text{ grains})$$

$$\frac{d^2}{w}s = 0.2212s = S_{1420} - S_{1250} = 41638.4 - 40750.8 = 887.6,$$

and therefore $s = 887.6 \div 0.2212 = 4013$ feet,

and

.72

2

$$\frac{a}{w}t = 0.2212t = 160.9015 - 160.2344 = 0.6671,$$

and therefore $t = 0.6671 \div 0.2212 = 3^{\prime\prime}.016$.

(2) Calculate the same example with the tables adapted for French measures. Here

$$a = 11.52 \text{ in.} = 29.26 \text{ cm.};$$

$$p = 600 \text{ lbs.} = 272.16 \text{ kgs.}$$

$$1420 \text{ f. s.} = 432.81 \text{ m. s.},$$

$$1250 \text{ f. s.} = 381.0 \text{ m. s.},$$

and

$$a^2 \div p = 3.146 \ (\omega = 527 \text{ grains}),$$

then

$$\frac{a}{p}s' = \mathfrak{S}_{432'81} - \mathfrak{S}_{381} = 183042 - 179141 = 3901,$$

 $s' = 3901 \div 3.146 = 1240$ metres = 4068 feet,

$$\frac{a^2}{p}t' = \mathbf{\overline{U}}_{_{432'81}} - \mathbf{\overline{U}}_{_{381}} = 2320.54 - 2310.90 = 9.64,$$

 $t' = 9.64 \div 3.146 = 3''.065.$

ŏŕ

and

or

As we have used the standard density for which each table was adapted, in order to make the results comparable, by (91) we must reduce the French results by 1.37 per cent. Then the corrected =4068 - 55 = 4013 feet; value of s' and the corrected value of t'

$$= 3'' \cdot 065 - 0'' \cdot 041 = 3'' \cdot 024.$$

(3) Suppose we wish to find the time of flight of a spherical projectile (w = 163.5 lbs., d = 10.4 in.) over a range of 5000 feet, the muzzle velocity being 1988 f.s. and $\omega = 534.22$ grains. Here $d^2 \div w = 0.6615$. In the first place we must find the velocity v at the end of the range of 5000 feet. Here by Table XXIII.

$$S_v = S_{1966} - \frac{d^2}{w} 5000 = 11383.5 - 3307.5 = 8076.0 = S_{1045.7}.$$

Therefore the terminal velocity

v = 1045.7 f.s.

We must now find in what time the velocity of the same shot would be reduced from 1988 f.s. to 1045.7. By Table XXIV.

$$\frac{d^2}{w}t = 0.6615t = T_{1965} - T_{10457} = 19.4388 - 17.0755 = 2.3633.$$

Therefore $t = 2.3633 \div 0.6615 = 3^{".572}$ the required time of flight.

(4) We will now solve the same problem using French measures:

a = diameter of spherical projectile = 10.4 in. = 26.42 c.m.; p = its weight = 163.5 lbs. = 74.16 kgs.;5000 feet = 1524 metres;1988 f. s. = 605.93 m. s.,and $\omega = 527.0$ grains. $\tau = 1.0137$.

This gives

By Table xxx. we find

$$\mathfrak{T}_{\mathfrak{b}} = \mathfrak{T}_{\mathfrak{ses},\mathfrak{s}} - \frac{a^3}{p} \tau s = 50043 - \frac{(26\cdot42)^3}{74\cdot16} \times 1.0137 \times 1524$$
$$= 50043 - 14540 = 35503 = \mathfrak{T}_{\mathfrak{ser},\mathfrak{s}},$$
$$\therefore \ \mathfrak{b} = 318\cdot7 \ \mathrm{m.s.} = 1045\cdot6 \ \mathrm{f.s.}$$

Next to find in what time t the velocity of the given spherical shot would be reduced from 605.93 to 318.7 m.s. By Table

$$\frac{n^{*}}{p}\tau t = \mathbf{T}_{\text{ens} \, n} - \mathbf{T}_{\text{alle} \, 7} = 280^{''} \cdot 343 - 246^{''} \cdot 27 = 34^{''} \cdot 073,$$

therefore

$$t = \frac{34'' \cdot 073}{1 \cdot 0137} \times \frac{74 \cdot 16}{(26 \cdot 42)^2} = 3'' \cdot 571$$

very nearly as before where $\omega = 534.22$ grs.

100. The General Tables calculated for ogival-headed projectiles may be used to calculate range and time of flight for elongated projectiles having other forms of head, provided κ the ratio of their coefficients of resistance be known. In this case we shall have by (93)

$$\frac{d^2}{w}\kappa s = S_v - S_V \text{ and } \frac{d^2}{w}\kappa t = T_v - T_V.$$

As an example we will take the three rounds (70) of flatheaded projectiles: Rounds 464—6, where w = 70 lbs., d = 6 ins.; Barometer 30.4 ins.; Dry bulb thermometer 42° F., Wet do. 41° F. These observations give the weight of a cubic foot of air by Glaisher's Tables 561.2 grains on the day of experiment, so that $\tau = 561.2 \div 534.22 = 1.051$. Or, using the Table xx., we find directly $\log \tau = 0.0160 + .0057 = 0.0217$ which gives $\tau = 1.051$. The screens were 150 feet apart. The average of the times at which the three shots passed the third screen was 0".16011; and the ninth screen was 0".69015. Thus the mean time occupied by the shot in passing from the third to the ninth screen, or over 900 feet, was found by experiment to be 0".5300. The third screen was passed with a mean velocity 1827.7 f.s., and the ninth screen with a mean velocity of 1585 f.s. Referring to the Table XIV. of values of K for flat-headed shot we may assume $\kappa_2 = 2.06$ for the above range of velocity.

Then

$$\frac{d^2}{w}\kappa_2\tau = \frac{36}{70} \times 2.06 \times 1.051 = 1.1134,$$

and by Table XXVI.

 $\frac{d^2}{dt}\kappa_2\tau t = T_{18:7.7} - T_{1585} = 161^{''} \cdot 9892 - 116^{''} \cdot 3993 = 0^{''} \cdot 5899,$ therefore

$$t = \frac{0^{\prime\prime} \cdot 5899}{1 \cdot 1134} = 0^{\prime\prime} \cdot 530,$$

which agrees with experiment. Again, by Table xxv.,

$$\frac{d^*}{w}\kappa_2\tau s = S_{18277} - S_{1585} = 43388.7 - 42384.8 = 1003.9,$$

 $s = \frac{1003 \cdot 9}{1 \cdot 1134} = 901 \cdot 6$ feet instead of 900 feet. therefore

101. We will next take the three rounds 467-9 of hemispherical-headed projectiles (70), fired on a day when the height of the barometer was 30.25 inches; dry-bulb thermometer 45° F., and the wet ditto 42° F. These give $\tau = 1.039$. The mean times of the shot passing the third and ninth screens were 0".15923 and 0".66713 respectively, giving 0".5079 as the mean time, found by experiment, occupied by the projectiles in passing from the third to the ninth screen, or over 900 feet. Also the mean velocity at the third screen was 1856 f. s.; and 1692 f. s. at the ninth screen. Referring to the Table XIII. of values of K for hemispherical-headed projectiles, it will be found that $\kappa_1 = 1.38$ between the above specified velocities.

Then

$$\frac{d^2}{w}\kappa_1\tau = \frac{36}{70} \times 1.38 \times 1.039 = 0.7374,$$

and, by Table XXVI.,

 $\frac{d^{*}}{w} \kappa_{1} \tau t = T_{1856} - T_{1092} = 162'' \cdot 0495 - 161'' \cdot 6766 = 0'' \cdot 3729,$

therefore

$$t = \frac{0^{\prime \cdot} \cdot 3729}{0 \cdot 7374} = 0^{\prime \prime} \cdot 506.$$

Again, by Table XXV.

$$\frac{d^2}{w} \kappa_1 \tau s = S_{18^{6}6} - S_{18^{9}2} = 43499.7 - 42838.9 = 660.8.$$

Therefore $s = \frac{660.8}{0.7374} = 896.1$ feet instead of 900 feet.

In the above two cases we have the advantage of using the values of κ_1 and κ_2 derived from the examples we have calculated. But the tables used in the calculations were derived from experiments made with *ogival*-headed projectiles.

102. In order to show clearly in what way the results of experiments were made available for the public service, it seems advisable to give, not only references, but *specimens* as well, of the useful ballistic tables adapted for practical use, which were published by me from time to time.

103. In the report of the results obtained by the employment of elongated projectiles with various forms of heads (1866), tables of remaining velocities were given for each form of projectile for intervals of 100 feet in range¹. The following is an abridgment of the two tables for solid ogival-headed experimental projectiles struck with radii of one and of two diameters, compared with similar tables calculated by the accompanying general tables (1889) derived from experiments made with ogival-headed shot struck with a radius of one diameter and a half.

	$\frac{d^2}{7v} = 0$.5584		<u>d</u> 70	$\frac{2}{7} = 0.5738$	
Distance	1 diam. 1866	1½ diam. 1889	Diff.	2 diam. 1866	1 <u>1</u> diam. 1889	Diff.
feet 0 500 1500 2500 2500 3500 3500 4000 4500	f.s. 1500'0 1434'3 1374'2 1318'9 1267'9 1220'7 1176'9 1136'1 1098'1 1062'6	f.s. 1500'0 1439'3 1381'2 1326'2 1274'7 1226'8 1182'4 1141'2 1102'8 1068'8	0 +5.0 +7.0 +7.3 +6.8 +6.1 +5.5 +5.1 +4.7 +6.2	f.s. 1500 °0 1435 °6 1376 °4 1322 °0 1271 °7 1225 °1 1181 °8 1141 °4 1103 °7 1068 °4	f.s. 1500'0 1437'7 1378'1 1321'9 1269'2 1220'5 1175'4 1133'5 1094'9 1061'2	$0 + 2 \cdot 1 + 1 \cdot 7 - 0 \cdot 1 - 2 \cdot 6 - 4 \cdot 6 - 6 \cdot 4 - 7 \cdot 9 - 8 \cdot 8 - 7 \cdot 3$

This comparison exhibits the value of the early experiments, for the calculated velocities of the ogival-headed projectiles struck with a radius of one diameter and a half, are generally less than those given for heads struck with a radius of two diameters, and greater than those given by a head struck with a radius of one diameter, as they ought to be.

104. In the Report on the resistance of the air to the motion of ogival-headed projectiles (July 23, 1868), tables were given of the remaining velocities of ogival-headed service shot when fired from 7, 8 and 9-inch M. L. guns², the projectiles being supposed to move under the action of the resistance of the air only. These tables were shortly afterwards reprinted in the *Proceedings* of the R. A. Institution³, and in Colonel Owen's *Modern Artillery*⁴. These are the tables referred to by General Mayevski in his Treatise on *Balistique Extérieure*, which matter will require to

¹ Reports, &c. 1865-1870, p. 15.

³ Notes, 1868, p. 69.

² Ib. p. 49. ⁴ 1871, p. 430. be noticed hereafter. The following is a copy of the complete table for the 7-inch gun, omitting decimals, where

d = 6.92 in. = 17.58 c. m.; w = 115 lbs. = 52.2 kil.; $d^2 \div w = 0.4164$.

Distance	0	100	200	300	400	500	600	700	800	900
feet	<i>f.s.</i>	<i>f. s.</i>	f. s.	<i>f. s.</i>	<i>f.s.</i>	<i>f.s.</i>	<i>f.s.</i>	f.s.	<i>f.s.</i>	<i>f.s.</i>
0	1717	1706	1695	1685	1674	1663	1653	1643	1633	1623
1000	1613	1603	1593	1584	1575	1565	1556	1546	1537	1527
2000	1518	1509	1499	1490	1481	1472	1463	1455	1446	1437
3000	1428	1419	1410	1402	1393	1385	1377	1368	1360	1352
4000	1344	1336	1328	1320	1312	1304	1226	1288	1281	1273
5000	1266	1259	1252	1224	1237	1230	1223	1216	1209	1203
6000	1196	1189	1183	1176	1170	1164	1157	1151	1145	1140
7000	1134	1129	1123	1118	1113	1107	1102	1097	1091	1086
8000	1081	1076	1071	1066	1061	1056	1052	1048	1045	1041
9000	1038	1034	1031	1028	1024	1021	1018	1015	1011	1008
10000	1005	1002	999	996	992	989	986	983	980	977

105. Here it must be pointed out that the coefficients, by which the above table was calculated in 1868, were revised in the following year, as explained at the conclusion of the report on the experiments made with spherical projectiles as follows: "In order, however, to obtain a more satisfactory table of values of $2000b \frac{w}{d^2}$ " (for ogival-headed projectiles) "we have commenced the recalculation of the times of passing each screen expressed to *five* places of decimals of a second. In this manner we shall obtain a table of average values of $2000b' \frac{w}{d^2}$ derived from all the rounds of *elongated* shot fired, just as we have obtained a table of values of $2000b' \frac{w}{d^2}$ for *spherical* shot¹." These results were printed shortly afterwards and they entirely superseded the first table of coefficients³, although the alteration was not great.

Also in the Report on experiments made with spherical projectiles, the coefficients obtained by experiment were used in a manner similar to the above to calculate the remaining velocities of spherical projectiles fired from the service guns³. The same were reprinted in Tables of Remaining Velocities⁴, &c.: in Colonel Owen's Modern Artillery⁵; and in the Proceedings of the R.A. Institution⁶. The following is an abridgment of this Table.

- ¹ Reports, &c., 1865-1870, p. 65.
- ³ Ib. p. 116.
- * 1871, p. 432.

- ² Ib. pp. 123-152.
- 4 1871, p. 35.
- ⁶ 1871, p. 379.

"Table showing the Velocities of Spherical Solid Shot for the "undermentioned Guns at intervals of 100 feet, supposing the "Shot to move in a straight line, subject only to the Resistance of "the Air." Report, dated Feb. 13, 1869.

Gun	$d^2 \div 7 \vartheta$	Gun	$d^2 \div w$	Gun	$d^3 \div w$
15-in.	·4898	32-pr.	1.5101	9-pr.	1.8422
150-pr.	·6615	24-pr.	1.3323	6-pr.	2.1518
100-pr.	•7766	18-pr.	1.4648	3 pr.	2.6564
68-pr.	·9487	12-pr.	1.6696		

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{smallmatrix} 1600 & 1787 & 1691 & 1628 & 1541 & 1415 & 1366 & 1311 & 1233 & 1175 & 1086 & 957 \\ 1700 & 1769 & 1668 & 1603 & 1512 & 1381 & 1331 & 1275 & 1196 & 1137 & 1049 & 922 \\ 1800 & 1752 & 1645 & 1578 & 1484 & 1349 & 1297 & 1241 & 1161 & 1101 & 1015 & 897 \\ 1900 & 1735 & 1623 & 1553 & 1456 & 1318 & 1265 & 1208 & 1128 & 1068 & 984 & 873 \\ 1900 & 1735 & 1623 & 1553 & 1456 & 1318 & 1265 & 1208 & 1128 & 1068 & 984 & 873 \\ 1900 & 1735 & 1623 & 1553 & 1456 & 1318 & 1265 & 1208 & 1128 & 1068 & 984 & 873 \\ 1900 & 1735 & 1623 & 1553 & 1456 & 1318 & 1265 & 1208 & 1128 & 1068 & 984 & 873 \\ 1900 & 1735 & 1623 & 1553 & 1456 & 1318 & 1265 & 1208 & 1128 & 1068 & 984 & 873 \\ 1900 & 1735 & 1623 & 1553 & 1456 & 1318 & 1265 & 1208 & 1128 & 1068 & 984 & 873 \\ 1900 & 1735 & 1623 & 1553 & 1456 & 1318 & 1265 & 1208 & 1128 & 1068 & 984 & 873 \\ 1900 & 1735 & 1623 & 1553 & 1456 & 1318 & 1265 & 1208 & 1128 & 1068 & 984 & 873 \\ 1900 & 1735 & 1623 & 1553 & 1456 & 1318 & 1265 & 1208 & 1128 & 1068 & 984 & 873 \\ 1900 & 1735 & 1623 & 1553 & 1456 & 1318 & 1265 & 1208 & 1128 & 1068 & 984 & 873 \\ 1900 & 1735 & 1623 & 1553 & 1456 & 1318 & 1265 & 1208 & 1128 & 1068 & 984 & 873 \\ 1900 & 1735 & 1623 & 1553 & 1456 & 1318 & 1265 & 1208 & 1128 & 1068 & 984 & 873 \\ 1900 & 1735 & 1623 & 1553 & 1456 & 1318 & 1265 & 1208 & 1128 & 1068 & 984 & 873 \\ 1900 & 1735 & 1623 & 1553 & 1456 & 1318 & 1265 & 1208 & 1128 & 1068 & 984 & 873 \\ 1900 & 1735 & 1208 & 1128 & 1068 & 984 & 873 & 1068 & 984 & 873 & 1068 & 984 & 873 & 1068 & 984 & 873 & 1068 & 984 & 873 & 1068 & 984 & 873 & 1068 & 984 & 873 & 1068 & 984 & 873 & 1068 & 984 & 873 & 1068 & 984 & 873 & 1068 & 1068 & 984 & 873 & 1068 & 984 & 873 & 1068 & 984 & 873 & 1068 & 984 & 873 & 1068 & 1068 & 984 & 873 & 1068 & 984 & 873 & 1068$
$ \begin{smallmatrix} 1700 & 1769 & 1668 & 1603 & 1512 & 1381 & 1331 & 1275 & 1196 & 1137 & 1049 & 925 \\ 1800 & 1752 & 1645 & 1578 & 1484 & 1349 & 1297 & 1241 & 1161 & 1101 & 1015 & 897 \\ 1900 & 1735 & 1623 & 1553 & 1456 & 1318 & 1265 & 1208 & 1128 & 1068 & 984 & 873 \\ \end{smallmatrix} $
1800 1752 1645 1578 1484 1349 1297 1241 1161 1101 1015 897 1900 1735 1623 1553 1456 1318 1265 1208 1128 1068 984 873
1900 1735 1623 1553 1456 1318 1265 1208 1128 1068 984 873
2000 1717 1601 1529 1429 1288 1234 1176 1097 1036 956
2100 1700 1580 1505 1403 1258 1204 1146 1068 1007 930
2200 1683 1559 1482 1377 1230 1175 1117 1040 980 906
2300 1667 1538 1459 1352 1203 1147 1090 1014 955 884
2400 1650 1518 1437 1327 1176 1121 1065 990 932
2500 1633 1498 1415 1303 1151 1096 1041 968 911
2600 1617 1479 1394 1280 1127 1072 1018 946 892
2700 1601 1459 1373 1257 1104 1050 997 926
2800 1585 1440 1352 1235 1082 1029 977 907
3000 1554 1403 1311 1193 1041 990 940 871
3500 1479 1316 1219 1097 955 906 857
4000 1409 1235 1136 1019 884
······ ····· ····· ·····
4500 1343 1163 1065 954
······ ····· ····· ····· ·····
5000 1281 1098 1005 898
5500 1223 1042 952
6000 1170 993 906
6000 1170 993 906
6000 1170 993 906 6500 1120 950
6000 1170 993 906 6500 1120 950
6000 1170 993 906 6500 1120 950
6000 1170 993 906 6500 1120 950 7000 1076 910
6000 1170 993 906 6500 1120 950 7000 1076 910 7500 1036
6000 1170 993 906 6500 1120 950 7000 1076 910 7500 1036
6000 1170 993 906 6500 1120 950 7000 1076 910 7500 1036

106. By the help of the Table given for the 7-inch gun, where $d'^{*} \div w' = 0.4164$, we may find in what range the velocity of a 10-inch ogival-headed projectile where $d^{2} \div w = 0.2424$, will be reduced from 1700 to 1300 f. s. and from 1300 to 1100 f. s. Referring to the Table (104), it is found that the 7-inch shot has its velocity reduced from 1700 to 1300 f. s. in a range

$$4550 - 155$$
 feet = 4395 feet :

therefore the 10-inch shot would by (88) have its velocity reduced in like manner in a range

$$4395 \times (d^{2} \div w') \div (d^{2} \div w) = 4395 \times 0.4164 \div 0.2424$$

= 7550 feet = 2517 yards.

In the same way it is found from the Table that the velocity of the 7-inch shot is reduced from 1300 to 1100 f.s. in a range 7640 - 4550 = 3090 feet; therefore the 10-inch shot would suffer the same reduction of velocity in a range

 $3090 \times 0.4164 \div 0.2424 = 5307$ feet = 1769 yards;

where $\omega = 530.6$ grains.

The same law holds good for spherical projectiles. From the Table, (105), it appears that the 15-inch spherical projectile has its velocity reduced from 2100 to 1409 f. s. in a range of 4000 feet, where $d'^2 \div w' = 0.4898$. From this, we find that the velocity of the 100-pr. projectile, where $d^2 \div w = 0.7766$, would have its velocity reduced in like manner from 2100 to 1409 f. s. in a range

 $4000 \times 0.4898 \div 0.7766 = 2523$ feet.

From the Special Table for the 100-pr. we find 2528 feet.

107. The following are specimens of my earliest General Tables for spherical and ogival-headed projectiles, which connect velocity and space, and velocity and time. "A General Table for facilitating the Calculation of the Range "corresponding to a given loss of Velocity of any SPHERICAL "SHOT¹." 1871.

Dis- tance	0	10	20	30	40	50	60	70	80	90
100 200 300 400	1973'0 1932'5 1511'3 1481'2 1451'9 1423'2 1395'3 	2095.6 2052.5 2010.2 1968.9 1928.5 1508.3 1449.0 1420.4 1392.6 888.3	2006.0 1964.8 1924.5 1505.2 1475.3 1446.1 1417.6 1389.8 	2043.9 2001.9 1960.7 1920.5 1502.2 1472.3 1443.2	2082.6 2039.7 1997.7 1956.7 1916.6 1499.2 1469.4 1440.3 1412.0 1384.4 885.0	1466·4 1437·5 1409·2 1381·6 883·9	2031 ² 1989 ⁴ 1948 ⁶ 1908 ⁷ 1493 ² 1463 ⁵ 1434 ⁶ 1406 ⁴ 1378 ⁹ 882 ⁹		2022 ^{.8} 1981 ^{.2} 1940 ^{.5} 1900 ^{.8} 1487 ^{.2} 1457 ^{.7} 1428 ^{.9} 1400 ^{.8} 1373 ^{.5} 	5.s. 2061:0 2018:6 1977:1 1936:5 18969: 1484:2 1454:8 1426:1 1398:1 1370:8 879:7 869:1

108. "A General Table for facilitating the Calculation of "the Range corresponding to a given loss of Velocity of any "ELONGATED SHOT (Ogival Head)²." 1871.

Dis- tance	0	·10	20	30	40	50	60	70	80	90
feet	f.s.	f.s.	f.s.	f.s.		f.s.	f.s.	f.s.	f.s.	f.s.
0			1695.1		1690.3					1678.4
100	1676.0	1673.7	1671.3	1668.0	1666.6	1664'2		1659.2		1654.8
200	1652.2	1650.5	1647.9	1645.6	1643.3	1640.0	1638.6	1636.3	1634.0	1631.7
300	1629.4	1627.1	1624.8	1622.2	1620'2	1617.9	1615.6	1613.3	1611.1	1608.8
400	1606.2	1604.2	1601.0		1597.4	1595.1			1588.3	1586.0
						373			5.5	
	1275.9		1272.3			1267.1	1265.3	1263.6	1261.0	1260'1
2100		1256.7	1255.0		1251.6	1249.9		1246.5	1244.8	1243'1
2200	1241.5		1238.1		1234.8	1233.1	1231.5		1228.2	1226.5
		0,								1210.4
2300	1224'9	00	1221.0	1220'0		1216.8	1215.2		1212'0	
2400	1208-8	1207.2	1205.0	1204'0	1202.4	1200'9	1199.3	1197.7	1196.2	1194.6
		•••••		•••••						
5400	921.7	921.1	920.6	920'0	919.2	918.9	918.3	917.8	917.2	916.2
5700	905.4	904.8	904.3	903.8	903.3	902.7	902'2	901.7	901.1	900.7
1										

The above Tables were to be used as follows. "Let an "elongated projectile of 400 lbs. be fired from a 10-inch gun with

¹ Remaining Velocity, &c. 1871, p. 47; and Proceedings of the R. A. Inst. vii. p. 391.

² Remaining Velocity, &c. 1871, p. 48; and Proceedings of the R. A. Inst. vII. p. 392.

6 - 2

" an initial velocity of 1270 f. s., and let it be required to find what "would be the velocity at a distance of 1000 yards = 3000 feet. "Here $d^* \div w = 0.246$ and the reduced range = $3000 \times 0.246 = 738$ "feet. Referring to General Table, the initial velocity 1270 f. s. is "found corresponding to a distance 2033 feet, to which, adding "the *reduced* range 738 feet, we get 2771 feet, and at this distance "the velocity = 1152.6 f. s., which is the velocity which the 400-lb. "shot would have at 1000 yards from the gun¹."

109. "A General Table for facilitating the Calculation of the "Time corresponding to a given loss of Velocity of any Spherical "Shot^{*}." 1872.

v	9	8	7	6	5	4	3	2	I	0
<i>f.s.</i> 189 123 122 121 120 90	·014Š	". "0027 "0162 "4090 "4442 "4800 "5166 " "3377		 		·0081 ·0216 ·4230 ·4585 ·4945 ·5315 ·3766	".0094 .0230 .4265 .4620 .4982 .5352 	·0108 ·0244 ·4300 ·4656 ·5018 ·5390 ·3962	·0121 ·0257 ·4336 ·4692 ·5055 ·5428 ·4060	" 0135 0271 '4371 '4728 '5092 '5465 '4159

110. "A General Table for facilitating the Calculation of the "Time corresponding to a given loss of Velocity of any Elongated "Shot (Ogival Head)³." 1872.

21	9	S	7	6	5	4	3	2	I	0
<i>J. s.</i> 169 168 167 136 135 134 113 112 111 70	0.0024 00269 00518 	"		· 0098 · 0343 · 0594 · 0594 · 0347 · 0729 · 0347 · 0729 · 1016 · 1658 · 2321 · 0290	·0122 ·0368 ·0619 ·0385 ·0707 ·079 ·1723 ·2388 ·0732	·0146 ·0393 ·0644 ·0047 ·0423 ·0806 · ·1143 ·1789 ·2456 · ·1176	"0171 "0418 "0669 "0084 "0461 "0844 "0461 "0844 "1207 "1855 "2524 "1622	" '0195 '0443 '0695 '0121 '0499 '0883 '1271 '1221 '2592 '2070	"0220 0468 0720 0159 0537 0922 "1335 '1987 '2661 "2520	"0244 '0493 '0745 '0196 '0575 '0960 '1399 '2053 '2729 '2972

¹ Remaining Velocity, &c., p. 31; and Proceedings of the R. A. Inst. vii. p. 375, 1871.

³ Ib. p. 6.

² Proceedings of the R. A. Inst. viii. p. 4.

84

The following instructions were given for the use of the above Tables, 1872.

EXAMPLE. "Suppose it was required to find by the help "of the General Table in what time the velocity of a 700-lb. "elongated shot would be reduced from 1344 to 1129 f. s. "Here d = 11.52 inches and $d^2 \div w = .1896$. By Table we find "1".0806 corresponding to a velocity 1344 f. s., and 2".1464 "to a velocity 1129 f. s. Hence (time required) $\times d^2 \div w$ "= 2".1464 - 1".0806 = 1".0658, which gives the required time "= 1".0658 $\div .1896 = 5$ ".621."

111. My mathematical Treatise On the Motion of Projectiles under the Action of Gravity and the Resistance of the Air, published in 1873, contained General Tables of values of $(d^2 \div w) s$ and $(d^2 \div w) t$, connecting velocity and space, and velocity and time, which were recalculated for both spherical and ogival-headed projectiles. The Tables for spherical projectiles extended from velocity 500 to 1900 f. s. (Tables X. and XI.), and those for ogivalheaded projectiles from 540 to 1700 f. s. (Tables VIII. and IX.). These four Tables were reprinted in the Government Treatise on the Construction of Ordnance¹, 1877. The two Tables for ogivalheaded shot were reprinted in the Proceedings of the R.A. Institution², 1878; also in the R.A. Handbook for Field Service³, 1878; and in Major Sladen's Principles of Gunnery⁴, 1879.

112. Professor Niven communicated a paper to the Royal Society⁵ in 1877 on the approximate calculation of Trajectories of Projectiles, in which he made use of my two General Tables

$$\frac{d^2}{w}$$
 s, and $\frac{d^2}{w}$ t,

or S_v and T_v as he named them, for space and time, and gave a third Table D_v of his own.

113. The experiments of 1878, 9 extended the coefficients of resistance to ogival-headed projectiles to all velocities between 400 and 2500 f.s. New General Tables for S_v and T_v were calculated by the help of these coefficients, and for the above men-

¹ pp. 359—366.	² x. pp. 250-253.	³ pp. 292-301.
⁴ pp. 55—58.	⁵ Proceedings, No. 181.	

tioned limits of velocity which were printed as an Appendix to the Report on those experiments made with my Chronograph¹. Immediately afterwards these two Tables were reprinted in the Manual of Gunnery for H.M. Fleet, 1880; and also in an abridged form in the article "Gunnery" in the new edition of the Encyclopædia Britannica, 1880.

114. Lastly, the coefficients given in the Final Report of 1880, enabled me to extend my General Tables for ogival-headed projectiles to all velocities between 100 and 2800 f.s. These General Tables were first printed as an Appendix to the "Final Report," 1880. They were subsequently reprinted in the Manual of Gunnery for H.M. Fleet, 1880; also in the Text Book of Gunnery by Major Mackinlay, R.A., 1883 and 1887; and in the Treatise on Small Arms by Colonel Bond, R.A., 1884 and 1888.

115. Although my coefficients of resistance were derived from experiments made with guns of 3 to 9-inch calibre, Major McClintock, R.A., has found by careful experiment that they hold good for small-arm bullets, for he remarks "The accuracy of rifle-"bullet trajectories calculated by means of Professor Bashforth's "Tables has been tested by firing a large number of rounds through "paper screens placed at different points along the range.....The "screens were erected at intervals along a 500 yards and a "1000 yards range. The result of the experiments was most "satisfactory, the mean heights of the bullet-holes in the screens "agreeing closely with the heights found by calculation²."

> ¹ Report, &c. Part 11, 1879, pp. 51-58. ² Proceedings of the R. A. Inst. x11, p. 569.

CHAPTER V.

CALCULATION OF TRAJECTORIES OF PROJECTILES.

116. THE following is an explanation of the principal symbols used—g denotes the accelerating force of gravity and equals 32.191 f. s. in the Latitude of Greenwich. g (French measure) = 9.809 m. s., w the weight of the shot in pounds, p the weight in kilogrammes, d the diameter of the shot in inches, a the diameter in centimetres. f the retarding effect of the air for a velocity of v feet per second = $-2bv^3$ when supposed to vary as the *cube* of the velocity; or $= -2cv^3$ when supposed to vary as the square of the velocity; or $= -2ev^3$ when supposed to vary as the *square* of the velocity; or $= -2ev^3$ when supposed to vary as the *square* of the velocity of the projectile.

$$K = 2b \frac{w}{d^2} (1000)^2; \ k = 2c \frac{w}{d^2} (1000)^2; \ k = K \frac{v}{1000}.$$

x, y are the horizontal and vertical coordinates of the centre of gravity of the projectile, at the time t, when the shot has described an arc s. ϕ is the inclination to the horizon of the tangent to the trajectory at the point x, y. v_{ϕ} denotes the velocity of the shot in the ascending branch of the trajectory, when moving in a direction inclined to the horizon at an angle ϕ , and u_{ϕ} is corresponding horizontal velocity so that $u_{\phi} = v_{\phi} \cos \phi$. v_{ϕ}' and u_{ϕ}' denotes similar quantities in the descending branch of the trajectory. ω denotes the weight of a cubic foot of air in grains. II denotes the weight of a cubic metre of air in kilogrammes. When ogival-headed shot are mentioned in this treatise without any further particulars, it may be assumed that the heads are struck with a radius of one diameter and a half, which was the form used in the chief experiments. Elongated projectiles are all supposed to have a right-hand rotation about their own axes.

117. Suppose a projectile to be fired in a direction inclined at an angle a above the horizontal plane through the muzzle, to be acted upon by gravity g in parallel lines, and by a retarding force 2e (velocity)" acting at every point in the direction of the tangent to the trajectory of the projectile at that point which is assumed to pass through the centre of gravity of the shot, then there will be no force tending to draw the projectile out of the vertical plane of projection. Let the point of projection be taken for the origin, and let the axes of coordinates x and y be respectively horizontal and vertical, and in the vertical plane of projection. Let x, y be the coordinates of the centre of gravity of the shot at the time t, when the shot has described an arc s of its trajectory.

The equations of motion are

 $\begin{aligned} \frac{d^2 x}{dt^2} &= -2e\left(\frac{ds}{dt}\right)^n \frac{dx}{ds} = -2e\left(\frac{ds}{dt}\right)^{n-1} \frac{dx}{dt},\\ \frac{d^2 y}{dt^2} &= -2e\left(\frac{ds}{dt}\right)^n \frac{dy}{ds} - g = -2e\left(\frac{ds}{dt}\right)^{n-1} \frac{dy}{dt} - g,\\ \frac{dx}{dt} \frac{d^2 y}{dt^2} - \frac{dy}{dt} \frac{d^2 x}{dt^2} = -g \frac{dx}{dt}.\end{aligned}$

and

therefore

As usual suppose

$$p = \frac{dy}{dx}$$
,

then

$$\frac{dp}{dt} = \frac{\frac{dx}{dt}\frac{d^{*}y}{dt^{*}} - \frac{d^{*}x}{dt^{*}}\frac{dy}{dt}}{\left(\frac{dx}{dt}\right)^{*}} = -\frac{g}{\frac{dx}{dt}}$$

$$\frac{dp}{dt}\frac{dx}{dt} = -g$$
, and also $\frac{dp}{dx}\left(\frac{dx}{dt}\right)^2 = -g$,

or

or

$$\frac{d}{dp} = -\frac{u}{g}$$
; and $\frac{dx}{dp} = -\frac{u^2}{g}$(1).

118. Again
$$\frac{d^{*}x}{dt^{*}} = -2e\left(\frac{ds}{dt}\right)^{n}\frac{dx}{ds} = -2e\left(\frac{ds}{dx}\right)^{n-1}\left(\frac{dx}{dt}\right)^{n},$$
$$\frac{du}{dt} = -2e\left(1+p^{*}\right)^{\frac{n-1}{2}}u^{n}.$$

di di

Therefore $\frac{1}{u^{n+1}}\frac{du}{dt} = -2e\left(1+p^2\right)^{\frac{n-1}{2}}\frac{1}{u} = \frac{2e}{g}\left(1+p^2\right)^{\frac{n-1}{2}}\frac{dp}{dt}$ by (1).

CALCULATION OF TRAJECTORIES.

Integrating
$$-\frac{1}{nu^n} = C + \frac{2e}{g} \int (1+p^2)^{\frac{n-1}{2}} dp.$$

At the vertex, let $u = u_0$.

Then we have

therefore

$$v = u \sec \phi = \frac{u_0 \sec \phi}{\left\{1 - \frac{2eu_0^n}{g} n \int (1 + p^2)^{\frac{n-1}{2}} dp\right\}^{\frac{1}{n}}} \dots (3).$$

From (1) we have

$$\frac{dt}{dp} = -\frac{u}{g} = -\frac{u}{g} \frac{1}{\left\{1 - \frac{2eu_0^n}{g}n\int(1+p^2)^{\frac{n-1}{2}}dp\right\}^{\frac{1}{n}}}\dots\dots(4).$$

Now

$$\frac{2eu_0^n}{g} = \frac{\dot{M} \times 2eu_0^n}{Mg}$$

$$= \frac{\text{Resistance of the air at the vertex to the shot}}{\text{weight of the shot}} \dots (5)$$

since

or

 $dp = d \tan \phi = \sec^2 \phi d\phi = (1 + p^2) d\phi.$

Again by (1) we have

$$\begin{aligned} \frac{dx}{dp} &= -\frac{u^2}{g} = -\frac{u^2_0}{g} \frac{1}{\left\{1 - \frac{2eu_0}{g}n\int(1+p^2)^{\frac{n-1}{2}}dp\right\}^{\frac{2}{n}}},\\ x &= -\frac{u^2_0}{g} \oint^{\phi'} \frac{(1+p^2)\,d\phi}{\left\{1 - \frac{2eu^n_0}{g}n\int(1+p^2)^{\frac{n-1}{2}}dp\right\}^{\frac{2}{n}}}.....(7),\\ nce &\qquad \frac{dy}{dx} = p, \quad \frac{dy}{dp} = p\frac{dx}{dp}. \end{aligned}$$

and since

89

119. Suppose that the retarding force varies as the square of the velocity, then

$$n = 2; \quad 2e = 2c = k \frac{d^{*}}{w} \frac{1}{(1000)^{2}};$$

and by (5)
$$\frac{2eu_{0}^{*}}{g} = \frac{2cu_{0}^{2}}{g} = \frac{k}{g} \frac{d^{2}}{w} \left(\frac{u_{0}}{1000}\right)^{2} = \lambda \text{ suppose}.....(10),$$

also
$$n \int (1 + p^{2})^{\frac{n-1}{2}} dp = 2 \int (1 + p^{2})^{\frac{1}{2}} dp$$
$$= \tan \phi \sec \phi + \log_{\epsilon} \tan \left(\frac{\pi}{4} + \frac{\phi}{2}\right) = Q_{\phi} \text{ (see Table VII.),}$$

and by (2)
$$\left(\frac{1000}{u}\right)^{2} = \left(\frac{1000}{u_{0}}\right)^{2} - \frac{k}{g} \frac{d^{2}}{w} Q_{\phi}.....(11).$$

Therefore

by (3)
$$\frac{v}{u_0} = \frac{\sec \phi}{\{1 - \lambda Q_\phi\}^{\frac{1}{2}}} = \frac{1}{10^3}(v)....(12),$$

by (6)
$$t = -\frac{u_0}{g} \oint^{\phi} \int^{(1+p^2)} \frac{d\phi}{(1-\lambda Q_{\phi})^{\frac{1}{2}}} = -\frac{u_0}{10^4 g} ({}^{\phi}t_{\lambda}{}^{\phi'}) \dots (13),$$

by (7)
$$x = -\frac{u_0^{3}}{g} \oint^{\phi'} \frac{(1+p^{3}) d\phi}{(1-\lambda Q_{\phi})} = -\frac{u_0^{2}}{10^4 g} (\phi x_{\lambda} \phi') \dots (14),$$

by (8)
$$y = -\frac{u_0^{\mathfrak{s}}}{g} \oint_{\phi}^{\phi'} \frac{(p+p^{\mathfrak{s}}) d\phi}{\{1-\lambda Q_{\phi}\}} = -\frac{u_0^{\mathfrak{s}}}{10^4 g} (^{\phi}y_{\lambda} ^{\phi'}) \dots \dots \dots (15),$$

by (9)
$$s = -\frac{u_0^{\frac{2}{9}\phi}}{g} \int^{\phi'} \frac{(1+p^2)^{\frac{3}{2}} d\phi}{\{1-\lambda Q_{\phi}\}}$$
$$= -\frac{u_0^{\frac{2}{9}p}}{g} \int^{p'} \frac{(1+p^2)^{\frac{1}{2}} dp}{\{1-\lambda Q_{\phi}\}}$$
$$= \frac{u_0^{\frac{2}{9}\phi}}{2\lambda g} \int^{\phi'} \frac{d\{1-\lambda Q_{\phi}\}}{\{1-\lambda Q_{\phi}\}} = \frac{u_0^{\frac{2}{9}}}{2\lambda g} \log_{\epsilon} \left\{\frac{1-\lambda Q_{\phi'}}{1-\lambda Q_{\phi}}\right\}.....(16)$$

90

Here s the length of the arc of the trajectory is the only quantity that can be found by integration. The values of (t), (x) and (y) calculated by quadratures and also of (v), for useful values of λ and ϕ , will be found in Table IX.

120. Suppose next that the retarding force varies as the *cube* of the velocity, then

$$n = 3$$
; $2e = 2b = K \frac{d^2}{w} \left(\frac{1}{1000}\right)^3$,

and by (5) $\frac{2eu_0^n}{g} = \frac{2bu_0^3}{g} = \frac{K}{g} \frac{d^2}{w} \left(\frac{u_0}{1000}\right)^3 = \gamma$ suppose (17),

also
$$n \int (1+p^2)^{\frac{n-1}{2}} dp = 3 \int (1+p^2) dp$$

 $= 3 \tan \phi + \tan^3 \phi = P_{\phi}$ (see Table xv.).

By (2)
$$\left(\frac{1000}{u}\right)^3 = \left(\frac{1000}{u_0}\right)^3 - \frac{K}{g}\frac{d^3}{w}P_{\phi}$$
.....(18),

by (3)
$$\frac{v}{u_0} = \frac{\sec \phi}{\{1 - \gamma P_{\phi}\}^{\frac{1}{3}}} = \frac{1}{10^3}$$
 (v).....(19),

by (6)
$$t = -\frac{u_0}{g} \int^{\phi} \int^{\phi'} \frac{(1+p^2) d\phi}{(1-\gamma P_{\phi})^{\frac{1}{3}}} = -\frac{u_0}{10^4 g} \left({}^{\phi} \Gamma_{\gamma} {}^{\phi'} \right) \dots (20),$$

by (7)
$$x = -\frac{u_0^{2^{\phi}}}{g} \int^{\phi'} \frac{(1+p^2) d\phi}{(1-\gamma P_{\phi})^{\frac{3}{2}}} = -\frac{u_0^{2^{\phi}}}{10^4 g} ({}^{\phi} X_{\gamma}{}^{\phi'}) \dots (21),$$

by (8)
$$y = -\frac{u_0^2 \phi}{g} \int^{\phi'} \frac{(p+p^3) d\phi}{\{1-\gamma P_\phi\}^{\frac{3}{2}}} = -\frac{u_0^2}{10^4 g} ({}^{\phi} Y_{\gamma} {}^{\phi'}) \dots (22);$$

(X), (Y) and (T) have been calculated by quadratures for useful values of γ and ϕ . These results and corresponding values of (V) will be found in Table XVI. Intermediate values of these quantities must be found by proportional parts or, where greater accuracy is required, by interpolation.

121. Lastly, suppose that the retarding force arising from the resistance of the air varies as the 6th power of the velocity, then

$$n=6,$$

EXAMPLES OF THE CALCULATION OF TRAJECTORIES.

$$n \int (1+p^{s})^{\frac{n-1}{2}} dp = 6 \int (1+p^{s})^{\frac{s}{4}} dp$$

= $\tan \phi \left\{ \sec^{s} \phi + \frac{5}{4} \sec^{s} \phi + \frac{15}{8} \sec \phi \right\} + \frac{15}{8} \log_{\epsilon} \tan \left(\frac{\pi}{4} + \frac{\phi}{2} \right)$
= $W_{\phi} (\sec \text{ Table XVIII.}).....(23)$

...(23),

Tables for calculating the values of x, y and t have not been prepared for this case. Hence it will be necessary to use those prepared for the cubic or Newtonian Law or the General Tables after the velocity has been calculated.

Professor Greenhill has published some elaborate papers on the Motion of a Projectile in a resisting medium¹. He also effects a complete solution when the resistance is supposed to vary as the cube of the velocity². Professor Greenhill has also published papers on the Rotation required for the stability of an elongated projectile³, and on "Drift⁴."

EXAMPLES OF THE CALCULATION OF TRAJECTORIES.

122. We now proceed to give various examples of the use of this treatise in calculating trajectories of projectiles.

For the purpose of testing my coefficients we will make use of Range Tables, which have been carefully derived from actual experiment and where the muzzle velocity and "jump" have been measured. One of these Range Tables is that for the 63-inch Howitzer where the muzzle velocity is 751 f.s. These Range Tables were originally sent to me to show that my coefficients of 1879 did not give satisfactory results when tested by them. Certainly my general Tables could not be expected to apply to trajectories so much curved. But when the trajectory was broken up into short arcs and so properly calculated, the results agreed

² Ib. xiv. p. 373. ³ Ib. x. p. 589. ⁴ Ib. xi. p. 124.

92

¹ Proceedings of the R. A. Inst. xi. pp. 113, 589; xii. p. 17.

extremely well with the Range Tables¹. For examples of heavy shot I have used the Range Table recently prepared with great care by Captain H. J. May, R.N., for 12-inch shot fired at elevations of 0° to $4^{\circ,2}$ Further, I have used the Range Table of the 4-inch B.L. gun, in order to secure great variation of velocity. After the publication of Krupp's Tables this was the gun selected by Government in 1887 to be used in testing my coefficients of Resistance (K) on a *long* range, when they were found to be quite satisfactory, although originally obtained from experiments on *short* ranges.

6.3-inch Howitzer. Ranges calculated on a horizontal plane 6.5 feet below the muzzle, d = 6.27 inches, w = 70 lbs., no allowance for "jump." Angles of departure 5°, 10°, 15°, 20°, 25°, 30° and 35°.

Muzzle velocity 751 f.s. Range Table derived from instructions for the service of field guns, 1879.

(1)
$$\alpha = 5^{\circ}$$
, $V \cos 5^{\circ} = 748^{\circ}1$.

By (11) we have
$$\left(\frac{1000}{u_0}\right)^2 = \left(\frac{1000}{748\cdot 1}\right)^2 + \frac{k}{g}\frac{d}{w}Q_5$$
.
 $\log \frac{k}{g} = 0.27402$ Table IV.
 $\log \frac{d^2}{w} = 9.74944$
 $\log \frac{k}{g}\frac{d^2}{w} = 0.02346$
 $\log Q_5 = 9.24353$
 9.26699
erefore $\frac{k}{g}\frac{d^2}{w}Q_5 = 0.1849$
H $\left(\frac{1000}{u_0}\right)^2 = 1.7868 + 0.1849 = 1.971$
By Table X. $u_0 = 712.16$ f. s.
By (10) $\lambda = \frac{k}{g}\frac{d^2}{w}\left(\frac{u_0}{1000}\right)^2 = 0.5353$.

¹ Final Report, p. 45.

the

and

² Proceedings of the R. A. Inst. xiv. p. 356.

7.

93

Now	$\log \frac{1}{g} = 8.49227$
and	$\log u_0 = 2.85258$
therefore	$\log \frac{u_0}{g} = 1.34485$
and	$\log \frac{u_0^2}{10743}$

 $\log -g$

and

94

From Table IX., we obtain

We have to limit the descending branch by the consideration that the shot has to fall 6.5 feet more than it rose. Or the value of (y') for the descending branch must be as before 40.9, increased by

$$10^4 \times 6.5 \div \frac{u_0^2}{g} = 4.13,$$

or the value of (y') for the descending branch must be

40.9 + 4.1 = 45.0.

On referring to Table IX. for $\lambda = 0.5$ and $\lambda = 0.6$ it will be found that (y') = 45.0 for some value of ϕ between -5° and -6° . Hence we must calculate the values of (x'), (y'), (t') and (v') for -5° and -6° for $\lambda = 0.5353$; and then by proportional parts we can find the value of ϕ , (x'), (t') and (v') corresponding to

$$(y') = 45.0,$$

$$\frac{\lambda}{0.5353} - \frac{\phi'}{5^{\circ}} - \frac{(x')}{+836} + 160 - \frac{(y')}{-36^{\circ}1} - \frac{(t')}{+856} + 167 + \frac{960}{+960} - 7$$

$$\frac{\pi}{5^{\circ}} - \frac{6^{\circ}-1}{+996} + \frac{996}{-51\cdot4} - \frac{51\cdot4}{-5^{\circ}-58} + \frac{64}{-929} - \frac{70}{-45\cdot0} + \frac{3}{-953} - 7$$

$$\frac{1023}{+953} + \frac{1023}{-956} - 7$$

gives

 $_{0}x_{5'58} = 1464 \text{ feet}; \ _{0}y_{5'58} = -70.9 \text{ feet}; \ _{0}t_{5'78} = 2'' \cdot 108; \ v'_{5'58} = 680.8 \text{ f.s.}$ But $\underline{}_{5}x_{0} = \underline{1448}$, ${}_{5}y_{0} = \underline{+64\cdot 4}$, ${}_{5}t_{0} = \underline{1''\cdot 982}$ therefore $_{5}X_{5'58} = 971 \text{ yards}; _{5'58} = - 6.5 ,, _{5'78} = 4'' \cdot 09$ By Range Table X = 978 yards; Y = -6.5 , T' = 4''.29difference $-7 \text{ yards} \qquad 0 \qquad -0^{\prime\prime} \cdot 20$ (2) $\alpha = 10^{\circ}; \ \left(\frac{1000}{u_{\circ}}\right)^{2} = 1.8281 + 0.3742 = 2.2023.$ By Table x., $u_0 = 673.85$ f. s. and $\lambda = 0.4793$. For the ascending branch by Table IX., (y) (t) 175.6 1845 (x)(v)1932 1115 which give $x_0 = 2725.3 \text{ feet}; \quad x_0 = 247.7 \text{ feet}; \quad x_0 = 3''.862; \quad v_{10} = 751.3 \text{ f. s.}$ For the descending branch ϕ' λ (x') (y') (t') (v')- 11°·39 0·4793 + 1841 - 180·2 1925 933·7 which give $_{0}x_{11'39} = 2596'9 \text{ ft.}; \ _{0}y_{11'39} = -254'2 \text{ ft.}; \ _{0}t_{11'39} = 4'' \cdot 030; \ v'_{11'39} = 629'2 \text{ f.s.}$ But $_{10}x_0 = 2725 \cdot 3 \text{ ft.}; \ _{10}y_0 = 247 \cdot 7 \text{ ft.}; \ _{10}t_0 = 3'' \cdot 862$ $_{10}X_{11'39} = 1774 \text{ yards}; \ _{10}Y_{11'39} = - 6 \cdot 5 \text{ ft.}; \ _{10}T_{11'39} = 7'' \cdot 892$ and by Range Table X = 1789 yards; Y = -6.5 ft.; T = 8''.040Difference $\begin{array}{c} - 15 \text{ yards} & 0 & - 0^{\prime\prime} \cdot 148 \\ (3) & \alpha = 15^{\circ}; \ \left(\frac{1000}{u}\right)^2 = 1.9004 + 0.5724 = 2.4728, \end{array}$ and by Table x. $u_0 = 635.92$ f. s., and hence $\lambda = 0.4269.$

95

And by Table IX.,

 $\begin{array}{ccccccccc} \lambda & (x) & (y) & (t) \\ 0.4269 & + 3047 & + 425.9 & + 2855 \\ , & + 2818 & - 431.1 & + 2995 \end{array}$ (v') $+15^{\circ}$ $-17^{\circ}.69$ 928.5 22 $X_{17,09} = 2456$ yards; $_{15}Y_{17,09} = -6.5$ ft.; $_{15}T_{17,09} = 11^{11} \cdot 557$; $v'_{17,09} = 590$ f.s. and by Range Table

X = 2467 yards; Y = -6.5 ft.; T = 11''.700Difference

> $0, - 0'' \cdot 143$ - 11 yards

(4)
$$\alpha = 20^{\circ}; \left(\frac{1000}{u_0}\right)^2 = 2.0077 + 0.7850 = 2.7927.$$

Hence $u_0 = 598.39$ f. s., $\lambda = 0.378.$

and

and by Range Table

X = 3000 yards; Y = -6.5 ft.; T = 15''.20

Difference

+ 15 yards 0 _____14 (5) $\alpha = 25^{\circ}; \left(\frac{1000}{u_{\circ}}\right)^{2} = 2.1585 + 1.0190 = 3.1775.$ $u_0 = 561.0$ f. s. and $\lambda = 0.332$. Hence λ (x) (y) 0.332 5613 1392.9 (t)(v')φ 95° 5106 $-30^{\circ}.73$ 0.332 4994 -1399.6 5443 978 $_{20}X_{2074} = 3456$ yards; $_{25}Y_{3074} = -6.5$ ft.; $_{25}T_{3074} = 18''.383$; $v'_{3074} = 549$ f. s. By Range Table X = 3467 yards; Y = -6.5 ft.; $T = 18^{2.5}30$ Difference - 11 yards _____ -0".147

(6) $\alpha = 3$	30° ; $\left(\frac{1000}{u_0}\right)$	$\Big)^2 = 2.36$	41 + 1.2834	= 3.6475.	
Hence	$\dot{u}_{o} = 52$	23 [.] 6 f. s.;	and $\lambda = 0.2$	894.	
$\stackrel{oldsymbol{\phi}}{30^{\circ}}$	λ 0 [.] 2894	(x) 7083	$egin{array}{c} (y) \ 2192^{\cdot}0 \end{array}$	(t) 6381	(v')
$-37^{\circ}05$	>>	6226	- 2199.6	6845	1032

therefore

 $_{30}X_{3705} = 3778$ yards; $_{39}Y_{3705} = -6.5$ ft.; $_{30}T_{3705} = 21^{27.5} 11; v'_{3705} = 540.4$ f.s. By Range Table

X = 3813 yards; Y = -6.5 ft.; $T = 21^{2.7}750$

Difference

 $\begin{array}{ccc} -35 \text{ yards}; & \underline{0} & \underline{-0''\cdot 239} \\ (7) & \alpha = 35^{\circ}; & \left(\frac{1000}{u_{\star}}\right)^2 = 2\cdot 6424 + 1\cdot 5913 = 4\cdot 2337. \end{array}$ Hence $u_0 = 486.0$ f. s.; and $\lambda = 0.2493$. λ (x)(y)(t)(v') ϕ 35° (x)8744 0.24933305.8 7802 $-43^{\circ}\cdot14$ 7607 - 331498429 1107.5 ---

therefore

 $\sum_{35} X_{43'14} = 3999 \text{ yards}; \ \sum_{35} Y_{43'14} = -6^{\circ}5 \text{ ft.}; \ \sum_{35} T_{43'14} = 24'' \cdot 505; \ v'_{43'14} = 538 \text{ f.s.}$ By Range Table

X = 4000 yards; Y = -6.5 ft.; T = 24''.90Difference

-1 yard; <u>0</u> $-0^{\prime\prime}395$

123. We will now give some examples with heavy shot and high muzzle velocities, and for comparison of results we will use the Range Table¹ of Captain H. J. May, R.N., as already stated for elevations up to 4°, the limit of the table. Here the "jump" was found to be 6 minutes. Hence the results obtained by calculation for elevations of 1°, 2°, 3° and 4° must be compared with similar results derived from the Range Table for elevations of 0° 54', 1° 54', 2° 54' and 3° 54'. Here d = 12 inches, w = 714 lbs.,

¹ Proceedings of the R. A. Inst. 1886, p. 356.

в.

and muzzle velocity = 1892 f.s. The Newtonian Law holds approximately between this velocity and 1300 f.s., where

$$\log \frac{k}{g} = 0.64211.$$

The Range &c. are calculated for the horizontal plane passing through the muzzle of the gun.

(1)
$$\alpha = 1^{\circ}; \left(\frac{1000}{u_{\circ}}\right)^{*} = \left(\frac{1000}{1891\cdot7}\right)^{*} + \frac{k}{g}\frac{d^{*}}{w}Q_{1}$$
 by (11)
= 0.27945 + 0.03088 = 0.31033.

Hence $u_0 = 1795.1$ f.s., and $\lambda = 2.851$.

ϕ + 1°	λ	(x)	$\begin{pmatrix} y \\ 1 \cdot 6 \end{pmatrix}$	(t)	(v')
$+1^{\circ}$	2.851	184	1.6	179	
$-1^{\circ}.05$,,,	174	-1.0	178	951

 $_{1}X_{105} = 1195$ yards; $_{1}Y_{105} = 0$; $_{1}T_{105} = 1'' \cdot 99$; $v'_{106} = 1707 \cdot 1$ f.s. and by Range Table

 $X = \underline{1200} \text{ yards}; \quad Y = \underline{0}; \quad T = \underline{2'' \cdot 01};$ Difference <u>-5</u> yards <u>0</u> <u>-0'' \cdot 02</u> (2) $\alpha = 2^{\circ}; \left(\frac{1000}{u_{0}}\right)^{2} = 0.27968 + 0.06180 = 0.34148.$

Hence $u_0 = 1711.28$ f.s.; and $\lambda = 2.591$.

φ 2°	λ 2 [.] 591	(x) 385	$\begin{pmatrix} y \\ 7 \cdot 0 \end{pmatrix}$	(t) 367	(v')
$-2^{\circ}.25$	"	356.6	- 7.0	374	912.2

 $_{z}X_{zzs} = 2249$ yards; $_{z}Y_{zzs} = 0$; $_{z}T_{zzs} = 3^{\prime\prime} \cdot 939$; $v'_{zzs} = 1561 \cdot 5$ f.s. and by Range Table

 $X = 2267 \text{ yards}; \quad Y = 0; \quad T = 3^{".977}$ Difference -18 yards 0 -0^{".038} (3) $\alpha = 3^{\circ}; \quad (\frac{1000}{u_{\circ}})^{2} = 0.28012 + 0.09277 = 0.37289.$

Hence $u_0 = 1637.6$ f.s.; and $\lambda = 2.372$.

 and by Range Table

 $X = 3200 \text{ yards}; \quad Y = 0; \quad T = 5^{"\cdot 86}$ Difference <u>-8 yards</u> <u>0</u> <u>-0^{"\cdot 033}</u>

(4)
$$\alpha = 4^{\circ}; \left(\frac{1000}{u_0}\right)^2 = 0.28072 + 0.12382 = 0.40454.$$

Hence $u_0 = 1572.2$ f. s.; and $\lambda = 2.187$.

 $_{4}X_{502} = 4039$ yards; $_{4}Y_{502} = 0$; $_{4}T_{502} = 7'' \cdot 667$; $v'_{502} = 1341 \cdot 6$ f. s. and by Range Table

X = 4057 yards;	$Y = \underline{0};$	$T = 7'' \cdot 742$
Difference -18 yards	0	-0".075

. The calculated time of flight over

4057 yds. = time over 4039 + time over 18 yards = 7".667 + 0".040 = 7".707

which is $0^{"}\cdot 035$ less than $7^{"}\cdot 742$ the time given by the Range Table.

124. Using the horizontal muzzle velocities, the following have been found to be the times of flight by the General Tables, for the distances and elevations specified for the 12-inch B. L. gun.

·	Elevations	0° 54′	$1^{\circ}54'$	2° 54′ a	nd 3° 54'
By	Range	1200	2267	32 00	4057 yards
Range Table	Range Time of Flight	2 "·010	3".977	5''.860	7".742
	e of Flight	2 "·002	3''.967	5".845	7".715
	Difference -	- 0".008	- <u>0"·010</u>	-0"·015	-0".027

125. Next we will calculate several rounds for shot fired from the 4-inch B. L. gun and compare the results with those given in the Range Table. Here d = 4 inches; w = 25 lbs.; muzzle velocity = 1900 f.s. The "jump" is 6 minutes. The range is calculated on

99

the horizontal plane passing through the muzzle, as we have no information on this point.

(1)
$$\alpha = 1^{\circ}; \left(\frac{1000}{u_{o}}\right)^{*} = \left(\frac{1000}{u_{1}}\right)^{*} + \frac{k}{g}\frac{d^{*}}{w}Q_{1}$$

= 0.27709 + 0.09801 = 0.37510.

Hence $u_0 = 1632.8$ f.s. and $\lambda = 7.484 = 7.5$ nearly.

φ	λ	(x)	<i>(y)</i>	(t)	(v')
+ 1°	7.5	202	+ 1.9	188	
$-1^{\circ}.184$	>>	178	- 1.9	191.8	875.3

and $_{1}X_{1194} = 1049$ yards; $_{1}Y_{1194} = 0$; $_{1}T_{1184} = 1^{\prime\prime}.927$; $v'_{1184} = 1429$ f.s. and by the Range Table

$$X = 1083 \text{ yards}; \quad Y = 0; \quad T = 1^{".970}$$

Difference -34 yards 0 -0^{".043}

Where the tabular values of (v) or (v) change rapidly it will be necessary to use formula (19) or (12) when precision is required.

(2)
$$\alpha = 2^{\circ}$$
; $\left(\frac{1000}{u_{o}}\right)^{*} = 0.27735 + 0.19611 = 0.47346.$
Hence $u_{o} = 1453.3$ f. s. and $\lambda = 5.929.$
 ϕ λ (x) (y) (t) (v')
 $+ 2^{\circ}$ 5.929 450.7 8.61 395.4
 $- 2^{\circ}.764$ \dots 380.3 $- 8.61$ 427.3 799.3

and $_{2}X_{2764} = 1817$ yards; $_{2}Y_{2764} = 0$; $_{2}T_{2764} = 3^{\prime\prime}.714$; $v'_{2764} = 1162$ f.s. By Range Table

 $X = \frac{1811 \text{ yards};}{\pm 6 \text{ yards}} \quad Y = 0; \quad T = \frac{3''.72}{0}$ Difference $\pm \frac{6}{2} \text{ yards} \quad 0 \quad -0''.006$ (3) $\alpha = 3^{\circ}; \quad \left(\frac{1000}{u_{0}}\right)^{2} = 0.27777 + 0.29439 = 0.57216.$

Hence $u_0 = 1322.0$ f.s. and $\lambda = 4.906 = 4.9$ nearly.

 $_{s}x_{0} = 3991 \text{ feet};$ $_{s}y_{0} = 117.3 \text{ feet};$ $_{3}t_{0} = 2^{\prime\prime}.534.$

or

As the law changes from the Newtonian to the cubic at a velocity of about 1300 f.s. it will be convenient to change the law at the vertex; then

$$\begin{split} \gamma &= \frac{K}{g} \frac{d^2}{w} \left(\frac{u_0}{1000}\right)^3 = 3\cdot3891 \times 0\cdot64 \times (1\cdot322)^3 = 5\cdot012 = 5\cdot0 \text{ nearly.} \\ \phi & \gamma & (x) & (y) & (T) & (y') \\ -4^\circ\cdot512 & 5\cdot0 & 59\cdot4 & -21\cdot6 & 68\cdot3 & 773\cdot9 \\ \text{and} \\ o^{x_{4:33}} &= 3227\cdot5 \text{ feet; } _{0}y_{4:33} = -117\cdot3 \text{ feet; } _{0}t_{4:33} = 2''\cdot805. \\ \text{But} \\ \frac{sx_0}{sX_{4:33}} &= \frac{3991}{2406} \text{ jyards; } _{3}Y_{4:33} = 0 & _{3}T_{4:33} = \frac{5''\cdot334}{3}; \ v'_{4:33} = 1023 \text{ f.s.} \\ \text{By Range Table} \\ X &= 2400 \text{ jyards; } Y = & 0 & T' & = \frac{5''\cdot340}{-0''\cdot001} \\ \text{The same example may be solved by the use of French} \\ \text{Measures,} & \mathfrak{b} = 1900 \text{ f. s.} = 579\cdot11 \text{ m. s.;} \\ \mathbf{u} &= \mathfrak{b} \cos \phi = 578\cdot3 \text{ m. s.;} \\ d &= 4 \text{ in, } = 10\cdot16 \text{ c. m.} \end{split}$$

g = 9.809 m. s.; p = 11.34 kgs.

$$Log \frac{a^{2}}{p} = 0.95917;$$

$$Log \tau = Log \frac{534 \cdot 22}{527} = 0.00591;$$

$$\operatorname{Log} \frac{\mathbf{k}}{\mathrm{g}} = 0.51518$$
 (Table XXIX.).

 $\begin{pmatrix} \frac{1000}{u_0} \end{pmatrix}^2 = \left(\frac{1000}{u_3}\right)^2 + \frac{k}{g} \frac{a^2}{p} \tau Q_3 \qquad \qquad \text{Log } \frac{1}{g} = 9.00838 \\ = 2.9902 + 3.1688 = 6.1590. \qquad \qquad \text{Log } u_0 = \frac{2.60525}{u_0} \\ \text{Hence } u_0 = 402.94 \text{ m. s.} \qquad \qquad \text{Log } \frac{u_0}{g} = 1.61363 \\ \lambda = \frac{k}{g} \frac{a^2}{p} \tau \left(\frac{u_0}{1000}\right)^2 = 4.906 = 4.9 \text{ nearly.} \qquad \qquad \text{Log } \frac{u_0^2}{g} = 4.21888$

$$\phi$$
 λ (x) (y) (t)
3° 4.9 735 21.6 617

gives ${}_{s}x_{0} = 1216.6 \text{ m.}; {}_{s}y_{0} = 35.76 \text{ m.}; {}_{s}t_{0} = 2^{\prime\prime}.535.$

The law of Resistance changes to the cubic law at the vertex, and

$$\gamma = 5.011 = 5.0$$
 nearly.

φ	γ	(X)	(Y)	(T)	(v')
-4°.51	5.0	594	-21.6	682.5	774.2

gives

 $_{o}x_{451} = 983.3 \text{ m.}; \quad _{o}y_{451} = -35.76 \text{ m.}; \quad _{o}t_{451} = 2^{\prime\prime}.804; \quad v_{451}' = 312 \text{ m.s.}$ But

 $_{s}x_{0} = 1216.6 \text{ m.}; \quad _{s}y_{0} = + \frac{35.76}{2} \text{ m.}; \quad _{s}t_{0} = 2\frac{...535}{...532}$ $_{s}X_{451} = 2199.9 \text{ m.}; \quad _{s}Y_{451} = 0 \qquad _{s}T_{451} = 5\frac{...535}{...339}; \quad v_{451} = 1023.6 \text{ f.s.}$

= 2406 yards;

By Range Table

X = 2400 yards; Y = 0 $T = 5^{".340}$

Difference

$$\underbrace{+6 \text{ yards};}_{(4)} \underbrace{0}_{\alpha = 4^{\circ};} \left(\frac{1000}{u_{o}}\right)^{*} = 0.27836 + 0.39293 = 0.67129.$$
Hence $u_{o} = 1220.6$ and $\lambda = 4.182.$

The Newtonian Law holds up to a velocity of 1300 f.s. To find the value of ϕ corresponding approximately to this velocity we have $(v) = 10^3 v \div u_0 = 1300 \div 1.22056 = 1064$. From the table it will be found that $\phi = +1^\circ$.

$$\phi \quad \lambda \quad (x) \quad (y) \quad (t) \quad (v) + 4^{\circ} \quad 4^{\circ}182 \quad 1052 \cdot 0 \quad 42 \cdot 1 \quad 850 \cdot 5 \\ + 1^{\circ} \quad " \quad \frac{188 \cdot 4}{863 \cdot 6} \quad \frac{1 \cdot 7}{40 \cdot 4} \quad \frac{181 \cdot 4}{669 \cdot 1} \quad 1082 \\ {}_{4}v_{1} = \quad \overline{3997} \text{ ft.}; \, {}_{4}y_{1} = \overline{187 \cdot 0} \text{ ft.}; \, {}_{4}t_{1} = 2'' \cdot \overline{537}; \, v_{1} = 1321 \text{ f. s.} \\ \left(\frac{1000}{u_{1}}\right)^{2} = \left(\frac{1000}{u_{6}}\right)^{2} - \frac{k}{g} \frac{d^{2}}{w} Q_{1} = 0 \cdot 67129 - 0 \cdot 09801 = 0 \cdot 57328.$$

Hence $u_1 = 1320.7$ f. s.

We must now use the cubic law

$$\left(\frac{1000}{u_0}\right)^{s} = \left(\frac{1000}{u_1}\right)^{s} + \frac{K}{g}\frac{d^{s}}{w}P_{1}$$
$$= 0.4341 + 0.1136 = 0.5477$$

Hence $u_0 = 12223$ f.s. and $\gamma = 3.961 = 4.0$ nearly.

This law is to continue till the velocity is reduced to 1050 f.s. Now

$$(v) = 10^3 \times 1050 \div 12223 = 859,$$

which on referring to the table for $\gamma = 4.0$ will give $\phi = -3^{\circ}$.

The law still remains the cubic as before but with reduced coefficient of resistance. The shot has to fall

$$187.0 - 42.72 = 144.28$$
 ft. vertically.

$$\left(\frac{1000}{u_{0}}\right)^{s} = \left(\frac{1000}{u_{s}'}\right)^{s} - \frac{K}{g}\frac{d^{2}}{w}P_{s} = 0.8890 - 0.2303 = 0.6587,$$

which gives

H

 $u_0 = 1149.3$ and $\gamma = 2.221$.

95.10

The required value of (y) is

$$10^{4} \times 144 \cdot 28 \div \frac{u_{0}^{2}}{g} = 35 \cdot 16$$

$$\phi \qquad \gamma \qquad (x) \qquad (r) \qquad (T)$$

$$-3^{\circ} \qquad 2 \cdot 221 \qquad 472 \cdot 6 \qquad -11 \cdot 99 \qquad 497 \cdot 8$$

$$- \frac{35 \cdot 16}{-47 \cdot 15}$$

$$\phi \qquad \gamma \qquad (x) \qquad (r) \qquad (T) \qquad (v')$$

$$-6^{\circ} \qquad 2 \cdot 221 \qquad 871 \cdot 7 \qquad -43 \cdot 12 \qquad 955 \cdot 4 \qquad 842 \cdot 0$$

$$-7^{\circ} \qquad , \qquad 992 \cdot 4 \qquad -56 \cdot 88 \qquad 1102 \cdot 2 \qquad 824 \cdot 8$$

$$(ence \qquad -6^{\circ} 29 \qquad , \qquad 906 \cdot 9 \qquad -47 \cdot 15 \qquad 998 \cdot 0 \qquad 837 \cdot 0$$

$$-3^{\circ} \qquad 472 \cdot 6 \qquad -11 \cdot 99 \qquad 497 \cdot 8$$

$$_{s}x_{e_{29}} = 1782 \text{ ft.}; \quad {}_{s}y_{e_{29}} = -144 \cdot 22 \text{ ft.}; \quad {}_{s}t_{e_{29}} = 1^{\prime\prime\prime} \cdot 786; \quad v_{e_{29}} = 962 \text{ ft.} \text{ s}$$

$$_{i}x_{s} = 2924 \text{ ft.}; \quad {}_{i}y_{s} = -42 \cdot 72 \text{ ft.}; \quad {}_{i}t_{s} = 2^{\prime\prime\prime} \cdot 514$$

$$_{4}x_{i} = 3997 \text{ ft.}; \quad {}_{4}y_{i} = +\frac{187 \cdot 00}{0.06} \text{ ft.}; \quad {}_{4}t_{i} = \frac{2^{\prime\prime\prime} \cdot 537}{6^{\prime\prime\prime} \cdot 837}$$

$$_{4}X_{e_{29}} = \frac{8703}{901} \text{ ft.}; \quad {}_{4}Y_{e_{29}} = + \frac{0.06}{0.06} \text{ ft.}; \quad {}_{4}T_{e_{29}} = \frac{6^{\prime\prime\prime} \cdot 837}{6^{\prime\prime\prime} \cdot 837}$$

$$= 2901 \text{ yards}$$

By Range Table

$$X = 2917$$
 yards; $Y = 0;$ $T = 6^{".93}$

Difference

- 16 yards + 0.06 ft. - 0".09

$$\left(\frac{1000}{u'_{6.29}}\right)^3 = 0.6587 + 0.4858 = 1.1445$$

 $u'_{6.29} = 956.0$ f. s. = 318.7 y. s.

gives

5)
$$\alpha = 5^{\circ}; \ \left(\frac{1000}{u_{o}}\right)^{2} = 0.27915 \pm 0.49184 = 0.77099$$

Hence
$$u_0 = 1138.88 \text{ f. s.}$$
 and $\lambda = 3.641.$

To find where this law must be discontinued, we have

$$(v) = 10^{3} v_{\phi} \div u_{o} = 1300 \div 1.13888 = 1140,$$

which gives $\phi = +2^{\circ}$ nearly.

 ${}_{s}x_{s} = 3993 \text{ ft.;}$ ${}_{s}y_{s} = 256\cdot8 \text{ ft.;}$ ${}_{s}t_{z} = 2^{\prime\prime}\cdot539 \text{ ;}$ $v_{z} = 1320 \text{ f. s.}$ $\left(\frac{1000}{u_{s}}\right)^{2} = \left(\frac{1000}{u_{s}}\right)^{2} - \frac{k}{g}\frac{d^{2}}{w}Q_{z} = 0.77099 - 0.19611 = 0.57488.$ Hence $u_{*} = 1319\cdot0 \text{ f. s.}$

Here we change to the cubic law.

$$\left(\frac{1000}{u_0}\right)^s = \left(\frac{1000}{u_s}\right)^s + \frac{K}{g} \frac{d^2}{w} P_s \text{ by equation (18)}$$
$$= 0.4358 + 0.2273 = 0.6631 \text{ by Table XVII.}$$

Hence $u_0 = 1146.8$ f.s., and $\gamma = 3.271$ by equation (17).

 ϕ γ (x) (Y) (T) 2° 3·271 399 7·3 373 by Table XVI. which give

which give

 $_{2}x_{0} = 1632.0$ feet; $_{2}y_{0} = 29.8$ feet; $_{2}t_{0} = 1^{\prime\prime}.329$ But $_{5}x_{2} = \underline{3993.0}$,, ; $_{5}y_{2} = \underline{256.8}$,, ; $_{5}t_{2} = \underline{2^{\prime\prime}.539}$ Therefore

 ${}_{s}x_{0} = 5625.0$, ; ${}_{5}y_{0} = 286.6$, ; ${}_{5}t_{0} = 3^{\prime\prime}.868.$

The cubic law ends when

(v) =
$$10^{8}v_{\phi} \div u_{0} = 1100 \div 1.147 = 959$$
, which gives $\phi = -1^{\circ}$.
 $\phi \qquad \gamma \qquad (x) \qquad (y) \qquad (T) \qquad (v)$
nd $-1^{\circ} \qquad 3.271 \qquad 165.6 \qquad -1.4 \qquad 170 \qquad 950$

give

a

 $_{o}x_{i} = 676.5 \text{ feet}; \ _{o}y_{i} = -5.72 \text{ feet}; \ _{o}t_{i} = 0^{\prime\prime}.605; \ v_{i}' = 1088.1.$

To find u'_1 more correctly, we have

$$\left(\frac{1000}{u'_1}\right)^3 = 0.6631 + 0.1136 = 0.7767.$$

Hence

$$u'_{1} = 1087.9$$
 f. s.

To find ϕ where the velocity is *approximately* 1000 f. s., we have

$$(\mathbf{v}') = 10^{3} v_{\phi} \div u_{0} = 1000 \div 1.1468 = 872,$$

and the Table for $\gamma = 3.271$ gives $\phi = -3^{\circ}$.

The resistance of the air $\propto v^{6}$ for velocities 1100 to 1000 f.s.

$$\left(\frac{1000}{u'_{3}}\right)^{6} = \left(\frac{1000}{u'_{1}}\right)^{6} + \frac{L}{g}\frac{d^{2}}{w}\left(W_{3} - W_{1}\right) \text{ by equation (24)}$$
$$= 0.6031 + 0.3221 = 0.9252 \text{ by Table XIX.}$$

which gives $u'_{3} = 1013.0$ f. s.

As we have no Tables calculated to give the values of x, y, and t for a resistance varying as the 6th power of the velocity, we must use the Tables already calculated. We will use the Cubic Law and then we have

106 EXAMPLES OF THE CALCULATION OF TRAJECTORIES.

$$\frac{K}{g}\frac{d^{2}}{w}(P_{s}-P_{1}) = \left(\frac{1000}{u'_{s}}\right)^{5} - \left(\frac{1000}{u'_{1}}\right)^{5} = \left(\frac{1000}{1013\cdot0}\right)^{5} - \left(\frac{1000}{1087\cdot9}\right)^{5},$$
which gives
$$\frac{K}{g}\frac{d^{2}}{w} = \frac{1854}{1050}.$$
Therefore
$$u_{0} = 1134\cdot9 \text{ and } \gamma = 2\cdot581.$$

$$\phi \quad \gamma \quad (x) \quad (Y) \quad (T) \quad (V')$$

$$-1^{\circ} \quad 2\cdot581 \quad 167 \quad -1\cdot4 \quad 171$$

$$-3^{\circ} \quad , \quad 466 \quad -11\cdot7 \quad 494 \quad 894$$

give

$$_{1}x_{s} = 1196.4 \text{ ft.}; \quad _{1}y_{s} = -41.21 \text{ ft.}; \quad _{1}t_{s} = 1^{\prime\prime}.139; \quad v_{s}' = 1014.6 \text{ f. s.}$$

The cubic law with a reduced coefficient holds now to the end of the range

$$\left(\frac{1000}{u_{\rm o}}\right)^{\rm s} = \left(\frac{1000}{u_{\rm s}'}\right)^{\rm s} - \frac{K}{g} \frac{d^{\rm s}}{w} P_{\rm s} = 0.9620 - 0.2303 = 0.7317.$$

This gives $u_0 = 1109.8$ f. s. and $\gamma = 2.0$.

The shot has to fall a vertical height

= 286.6 - 5.72 - 41.21 = 239.67 feet,

and

 $10^4 \times 239.67 \div \frac{u_0^2}{g} = 62.66.$

 $\begin{array}{ccc} (x) & (y) \\ 477 & -12.1 \end{array}$ (T) φ Y (\mathbf{v}) - 3° 2.0500 $-8^{\circ}.04$ 1135- 74.76 1264822.4 ,, $_{s}x_{s04} = 2517 \cdot 3 \text{ ft.}; \quad _{s}y_{s04} = -239 \cdot 7 \text{ ft.}; \quad _{s}t_{s04} = 2'' \cdot 634; \quad v'_{s04} = 912 \cdot 6 \text{ f.s.}$ $_{1}y_{s} = -41.2 \text{ ft.}; _{1}t_{s} = 1^{\prime\prime}.139$ $x_{1} = 1196.4$, $_{0}x_{1} = 676.5$, $_{0}y_{1} = -5.7$ ft.; $_{0}t_{1} = 0''.605$ $_{0}x_{804} = 4390^{\circ}2$, $_{0}y_{804} = -286^{\circ}6$ ft.; $_{0}t_{804} = 4'' \cdot 378$ $_{s}y_{0} = +286.6 \text{ ft.}; \ _{s}t_{0} = 3''.865$ $x_{0} = 5623.0$, $_{b}X_{804} = 3338 \text{ yds.}; _{b}Y_{804} = 0$ $_{b}T_{804} = 8.243$ By Range Table $X = 3392 \text{ yds.}; \quad Y = 0 \qquad T = 8'' \cdot 440$ Difference - 54 yards 0 $-0'' \cdot 197$

EXAMPLES OF THE CALCULATION OF TRAJECTORIES. 107

In this descending branch we might have neglected to introduce the law of resistance $\propto v^{\delta}$ from v = 1100 to 1000 f.s. and instead of that changed the coefficient of the cubic law at the velocity 1050 f.s. We must on this supposition make the change at $\phi = -2^{\circ}$.

$$\phi \qquad \gamma \qquad (x) \qquad (Y) \qquad (T) \qquad (V) - 2^{\circ} \qquad 3 \cdot 271 \qquad 315 \cdot 3 \qquad - 5 \cdot 36 \qquad 331 \cdot 6 \qquad 907$$
gives $_{0}x_{2} = 1288 \text{ ft.}; \quad y_{2} = -21 \cdot 9 \text{ ft.}; \quad _{0}t_{2} = 1'' \cdot 181; \quad v'_{2} = 1040 \cdot 1.$

$$\left(\frac{1000}{u'_{2}}\right)^{2} = \left(\frac{1000}{u_{0}}\right)^{3} + \frac{K}{g} \frac{d^{2}}{w} P_{2} = 0 \cdot 6631 + 0 \cdot 2273 = 0 \cdot 8904$$

gives

 $u'_{2} = 1039.5$ f. s.

For the remainder of the trajectory we use

$$\log \frac{K}{g} = 0.35915,$$

$$\left(\frac{1000}{u_0}\right)^3 = \left(\frac{1000}{u_2'}\right)^3 - \frac{K}{g}\frac{d^2}{w}P_2 = 0.8904 - 0.1534 = 0.7370$$
es $u_0 = 1107.1$ f. s. and $\gamma = 1.985 = 2.0$ nearly.

gives

The vertical height of the shot when $\phi = -2^{\circ}$ is

286.6 - 21.9 = 264.7 feet,

give

108 EXAMPLES OF THE CALCULATION OF TRAJECTORIES.

126. The General Tables have also been used to calculate the times of flight over the ranges given by the Range Table for the following elevations of the 4-inch B.L. gun.

Elevation	0°.54'	1°.54′	2°. 54'	3°.54'	4°.54'
Range Table. Ranges	1083	1811	2400	2917	3392 yds-
,, ,, Times of Flight	1".97	3".72	5".34	6".93	8".44
Calculated Time of Flight	1".997	3".704	5".336	6''.909	8".459
Difference	1 0/1097	- 0".016	- 0".001	- 0".091	+ 0".019
Difference	40 021	-0 010	-0 001	-0 021	TU 010

The close agreement between calculation and experiment for ranges up to near two miles affords conclusive evidence of the correctness of the coefficients of resistance adopted.

127. Taking now the 4-inch B.L. gun of $13\frac{1}{2}$ cwt. fired at an elevation of 10° with a muzzle-velocity of 1180 f. s.

 $d = 4 \text{ inches }; \quad w = 25 \text{ lbs. }; \quad \text{`jump''} = 6 \text{ minutes,}$ $\left(\frac{1000}{u_0}\right)^8 = \left(\frac{1000}{u_{10}}\right)^8 + \frac{K}{g} \frac{d^2}{w} P_{10}$ = 0.6372 + 1.1593 = 1.7965.we $u_0 = 822.6 \text{ f. s. and } \gamma = 1.207.$

Hence

$$322'0$$
 i. s. and $\gamma = 1'207$.

We will neglect the consideration of the resistance varying as v^{δ} between the velocities 1100 and 1000 f. s., and suppose that a sudden change takes place at 1050 f. s. at which velocity the value of log $\frac{K}{g}$ falls from 0.53009 to 0.35915, but the cubic law holds on both above and below that velocity.

Here	$10^{3}v_{\phi} \div u_{0} =$	$10^{3} \times 1050$ -	$\div 822.6 = 1$	276,	
which gives		$\phi = 8^{\circ},$			
ф 10°	$\gamma 1.207$	(X) 2391	(Y) 234·5	(T) 2043	(v)
8°	>>	1750	132.7	1565	1283
or 10° to 8°		641	101.8	478	
$_{10}r_{0} = 1347$	4 ft.; $_{10}y_8 = 2$				•4 f. s.
	$\left(\frac{1000}{u_s}\right)^s = 1$	1.7965 — 0.8	0206 = 0.87	59.	
Hence	U.	= 1045.16	f. s.		

We now use the value

$$\frac{K}{g} = 0.35915,$$
$$\left(\frac{1000}{u_0}\right)^3 = 0.8759 + 0.6210 = 1.4969.$$

Hence

$$u_0 = 874.18$$
 f. s. and $\gamma = 0.9775$.

But

$$_{10}x_8 = \underline{1347.4}$$
 , $_{10}y_8 = 214.0$, $_{10}t_8 = \underline{1^{\prime\prime}.222}$

therefore

 $x_0 = 5292.9$, $y_0 = 507.7$, $y_0 = 5''.366$

The law changes at the velocity 820 f.s. Now

$$10^3 \times v_{\phi} \div u_{\phi} = 10^3 \times 820 \div 874.18 = 938 = (Y),$$

which gives $\phi = -4^{\circ}$. We must therefore continue the same law to -4° .

therefore

$$y_{4} = 15573 \text{ ft.}; \quad y_{4} = 533 \text{ ft.}; \quad t_{4} = 1^{\prime\prime} \cdot 840; \quad v_{4}^{\prime} = 8235 \text{ f. s}$$

 $\left(\frac{1000}{u_{4}^{\prime}}\right)^{3} = 1.4969 + 0.3075 = 1.8044,$

which gives

$$u'_{4} = 821.42$$
 f. s.

We now pass to the Newtonian Law.

$$\left(\frac{1000}{u_0}\right)^2 = \left(\frac{1000}{u_4'}\right)^2 - \frac{k}{g}\frac{d^2}{w}Q_4$$
$$= 1.4821 - 0.1684 = 1.3137$$

Hence	$u_0 = 872$	47 f.s. and	$\lambda = 0.9156.$		
· •	λ	(x)	(y)	(t)	(v)
ϕ - 13°·19	0.9156	1949	-214.8	2134	858
- 4°.00	>>	658	-22.6	678	
- 4° to -	13°·19	1291	-192.2	1456	

$ \begin{array}{llllllllllllllllllllllllllllllllllll$
therefore
$v_{13\cdot 19} = 4610\cdot 1$, $v_{13\cdot 19} = -507\cdot 8$, $v_{13\cdot 19} = 5''\cdot 786$.
But
$_{10}x_0 = 5292.9$, $_{10}y_0 = +507.7$, $_{10}t_0 = 5''.366$
Hence
$_{10}X_{13:10} = 3301 \text{ yards}; _{10}Y_{13:19} = - 0.1 \text{, } _{10}T_{13:19} = 11^{\prime\prime}.152$
by Range Table
X = 3414 yards; $Y = 0.0$; $T = 11''.43$
Difference
$-\underline{113} \text{ yards} \qquad -\underline{0'1}, \qquad \underline{-0''\cdot 278}$

128. We will now calculate the range, &c. of the 4-inch B.L. gun fired at an elevation of 15°, taking into account the variation in the density of the air, supposing that at the gun the readings of the barometer and thermometer were respectively 30 inches and 67° F. Referring to Table XX, we find the corresponding value of $\log \tau$ to be 9.9935. This corresponds to a height 5100 feet in Table XXI. It will be found by trial that the rise for the arc 1900 to 1300 f.s. is about 1000 feet, or the mean height would be 500 feet, which added to 5100 feet equals 5600 feet, which gives $\log \tau = 9.9856$ by Table XXI. Muzzle velocity 1900 f. s. as before.

$$\left(\frac{1000}{u_{\circ}}\right)^{2} = \left(\frac{1000}{18352}\right)^{2} + \frac{k}{g}\frac{d^{2}}{w}\tau Q_{15} = 0.2969 + 1.4726 = 1.7695,$$

hich gives $u_{\circ} = 751.75$ fs and $\lambda = 1.535$

W

The law of resistance changes at the velocity 1300 f.s. To find the corresponding value of ϕ we have $(v) = 1000v_{\phi} \div u_0 = 1730$, which gives $\phi = 12^\circ$.

We will omit the law of resistance varying as v^{6} and suppose the cubic law extends from 1300 to 1050 f.s. Using the above law we may find approximately the value of ϕ corresponding to 1050 f.s. for $(v) = 1000 \times 1050 \div 751.75 = 1396$, which gives $\phi = 8^{\circ}$. Then $({}^{12}y^{8}) = 432.2 - 141.5$ gives approximately ${}_{12}y_{8} = 510$ feet. And $5100 + 979 + \frac{1}{2}510 = 6334$ feet gives $\log \tau = 9.9741$ by Table XXI. From $\phi = 12^{\circ}$ to $\phi = 8^{\circ}$ the cubic law holds and $\log \frac{K}{g} = 0.53009$ by Table IV. And

$$\begin{split} & \left(\frac{1000}{u_0}\right)^3 = \left(\frac{1000}{u_{12}}\right)^3 + \frac{K}{g} \frac{d^2}{w} \tau P_{12} = 0.4722 + 1.3227 = 1.7949, \\ & \text{which gives} \qquad u_0 = 822.82 \text{ f.s. and } \gamma = 1.139, \\ & \frac{\phi}{12^\circ} \quad 1.139 \quad 3104 \quad 377.5 \quad 2548 \\ & 8^\circ \quad , \quad 1723 \quad 129.9 \quad 1553 \quad 1259 \\ & {}_{12}x_8 = 2905 \text{ feet}; \ {}_{12}y_8 = 520.8 \text{ feet}; \ {}_{12}t_8 = 2^{\prime\prime}.543; \ v_8 = 1036 \text{ f. s.}, \\ & \left(\frac{1000}{u_8}\right)^3 = \left(\frac{1000}{u_0}\right)^3 - \frac{K}{g} \frac{d^2}{w} \tau P_8 = 1.7949 - 0.8672 = 0.9277, \end{split}$$

which gives

.*

$$u_8 = 1025.4$$
 f. s.

Suppose the above law to hold up to $\phi = 0$, the shot has to rise $129.9 \times 10^{-4} \times (u_0^2 \div g) = 273$ feet. Now

 $5100 + 979 + 521 + \frac{1}{2}273 = 6737$ feet,

which gives $\log \tau = 9.9678$ approximately for next arc.

The cubic law of resistance still holds but the coefficient is reduced to $\log \frac{K}{q} = 0.35915$.

$$\left(\frac{1000}{u_0}\right)^3 = \left(\frac{1000}{u_8}\right)^3 + \frac{K}{g}\frac{d^2}{w}\tau P_8 = 0.9277 + 0.5766 = 1.5043,$$

.
$$u_0 = 872.75$$
 f.s. and $\gamma = 0.9032 = 0.9$ nearly.

The law changes at the velocity 820 f. s. and

$$1000 \times 820 \div u_0 = 940,$$

which gives $\phi = -5^{\circ}$ and (y) = 34.8, so that $34.8 \div 10^4 \times u_0^2 \div g = 82.35$ feet. So that the mean height for the next arc will approximately be $5100 + 1786 - \frac{1}{2}82 = 6845$ feet, which gives $\log \tau = 9.9661$. This gives $\gamma = 0.900$.

$$\phi \qquad \gamma \qquad (x) \qquad (Y) \qquad (T) \qquad (V) -5^{\circ} \qquad 0.9 \qquad 814 \qquad -34.8 \qquad 844 \qquad 935 \\ \therefore \ _{o}x_{5} = 1926 \text{ ft.}, \ _{o}y_{5} = -82.3 \text{ ft.}, \ _{o}t_{5} = 2''.288, \ v'_{5} = 816 \text{ f. s.} \\ \left(\frac{1000}{u'_{5}}\right)^{3} = \left(\frac{1000}{u_{0}}\right)^{3} + \frac{K}{g} \frac{d^{2}}{w} \tau P_{5} = 1.5043 + 0.3561 = 1.8604, \\ \therefore \ u'_{5} = 813.07 \text{ f. s.}$$

The law now changes to the Newtonian, where $\log \frac{k}{g} = 0.27402$, and the mean height of the shot is $5100 + \frac{1}{2}(1716 - 82) = 5952$ which gives $\log \tau = 9.9801$.

$$\left(\frac{1000}{u_0}\right)^{\mathfrak{s}} = \left(\frac{1000}{u_{\mathfrak{s}}'}\right)^{\mathfrak{s}} + \frac{k}{g}\frac{d^{\mathfrak{s}}}{w}\tau Q_{\mathfrak{s}} = 1.5126 - 0.2013 = 1.3113$$

 $\therefore u_0 = 873.27$ f.s. and $\lambda = 0.8762$.

φ	λ	<i>(x)</i>	<i>(y)</i>	(t)	(v)
- 5°	0.8762	814	- 34.8	844	
- 25.77		3486	- 754-1	4085	811
	5 ^{.7} 25.77 =	6330 feet;	$_{sy_{25\cdot77}} = -\overline{1703\cdot9}$ feet;	5t25.77 = 8".792	$v'_{25\cdot77} = 708\cdot2$ f.s.
	ox ₅ =	1926 feet;	$_{0}y_{5} = -$ 82.3 feet;	$_{0}t_{5} = 2^{\prime\prime} \cdot 288$	$u'_{25\cdot77} = 637\cdot 0$
			$_{0}y_{25\cdot77} = -1786\cdot2$ feet;		
	$_{15}x_0 =$	10792 feet ;	$_{15}y_0 = +1786.0$ feet;	$_{15}t_0 = 9'' \cdot 259$)
		6349 yards;	$_{15}Y_{25\cdot77} = -0.2$ feet;	$_{15}T_{95\cdot77} = 20^{\prime\prime}\cdot333$)
By Range Table	• X =	6608 yards;	Y = 0	$T = 21'' \cdot 340$)
Differen	ce	- 259 yards	- 0.2 feet	-1".00	L
2/11101 011				Construction of the owner own	

129. I have calculated the preceding example according to the laws of resistance given in Table IV, from which I obtained the following results.

Ascending Branch.

$x_{12} =$	3982 feet;	$y_{12} =$	970·1 feet;	$_{15}t_{12} = 2'' \cdot 600$
$x_{9} =$	2253 feet;	$_{12}y_{9} =$	418.8 feet;	$_{12}t_9 = 1^{\prime\prime}.928$
	4425 feet;		373.8 feet;	$_{9}t_{0} = 4^{\prime\prime}.660$
$_{15}x_0 = 1$	10660 feet;	$_{15}y_0 = 1$	1762 [.] 7 feet;	$_{15}t_{0}=9''\cdot 188$

Descending Branch.

$_{0}x_{5} =$	1881 feet;	$_{0}y_{5} = -$	80.2 feet;	$_{0}t_{5} =$	2''.263
$_{5}x_{26'03} =$	6205 feet;	$_{5}y_{26'03} = -$	1682 [.] 9 feet;	5t28'03 ==	8".768
	8086 feet;	$_{0}y_{26'03} = -1$	1763 [.] 1 feet;	$_{0}t_{26^{\circ}03} =$	11".031.
$x_{15}x_{0} = 1$	0660 feet;	$_{15}y_0 = +$	1762.7 feet;	$_{15}t_0 =$	9"·188
		$_{15}Y_{26'03} = -$	0.4 feet;		
By Range 7	Fable				
X =	6608 yards;	Y =	0	T =	21".340
Difference			**		
-	– 359 yards		-0.4 feet		$-1'' \cdot 121$

I have also calculated the above example for an ogival head struck with a radius of two diameters, using $\kappa \frac{d^2}{w} = 0.97 \frac{d^2}{w}$ instead of $\frac{d^2}{w}$ throughout, from which I obtained a range 6448 yards.

Where the coefficients of resistance, &c. are correct, the calculated times of flight and range ought to agree with experiment, when the air is still. But a wind might not affect the time of flight sensibly, and yet disturb the range considerably. See a paper by Colonel Maitland, R.A., "On the influence of the wind on the motion of projectiles¹." My calculated angles of descent and terminal velocities have not been compared with those given in the Range Tables, because as these latter were not measured quantities they afforded no test of the accuracy of my coefficients.

¹ Proceedings of the R. A. Inst. viii. p. 343.

The Jubilee Rounds.

130. When the "Jubilee" experiment was first spoken of a rough calculation was made by me, neglecting the variation of the density of the air, which gave a range of 16,709 yards for an elevation of 40°, and I then expressed an opinion that the actual range would probably be a mile or two more. But when it was resolved to carry out the experiment, I decided to calculate the range and time of flight by Bernoulli's method, using the values of the coefficients of resistance given in Table 1v, and allowing for the variation in the density of the air. The muzzle velocity was supposed to be 2360 f.s.; the diameter of the shot 9.2 inches; its weight 380 lbs.; and the elevation 40°. The atmosphere was supposed to be undisturbed, and the force of gravity and the temperature of the air were assumed to be constant. This calculation was made with very great care, and to secure accuracy steps of a single degree were taken from 40° to 30°, and steps of two degrees from 30° to 18°. The range on a horizontal plane passing through the muzzle was thus found to be 19,436 yards and the time of flight 62".15. These results were communicated to the Ordnauce Committee, March 31, 1888. In the following month two rounds were fired at an elevation of 40°, and the ranges obtained were 21,048 and 21,358 yards with a "fresh favorable wind¹." On this I expressed an opinion to the Ordnance Committee that "the calculated range falls so much below the experimental range that there must be some error either in the calculation or in the measurements." The nature of the error was apparent when in the following July two more rounds were fired at an elevation of 40°, which gave ranges of 20,236 and 20,210 yards, being about 1000 yards less than those obtained before. It was also found that the actual muzzle velocity was 2375 f.s. instead of 2360 f.s. which was used in the calculation. The long range obtained in April appeared to be due chiefly to the "fresh favorable wind" which had a much greater effect than was expected.

¹ Proceedings of the R. A. Inst. xvr. p. 491.

But it should be remembered that in the case of a steady wind, its velocity at a height of 16,000 feet would be at least *three times* its velocity on the surface of the earth, and that the wind would be acting upon the shot for at least sixty seconds. The wind, at the time the experiments were made, was generally favourable, but in no case unfavourable to a long range.

131. Afterwards the same data were used with muzzle velocity 2360 f.s. to calculate a complete Range Table for all elevations up to 45° ; but the Range, Time of Flight, &c. were calculated for a horizontal plane 27 feet below the muzzle of the gun. The air was supposed to be at rest. This Range Table was communicated to the Ordnance Committee, Aug. 7, 1888; and it was published in "Nature" as follows, with the exception of some small corrections for elevations 1° to 4° .

THE JUBILEE ROUNDS.

Eleva- tion	Range	Height of Vertex	Time of Flight	Angle of Descent	Striking Velocity	Horizontal Striking Velocity
° 0 1 2 3	Yards 969 2,108 3,419 4,574	Feet 0 25 94 201	Seconds 1°3 3°2 5°1 7°3	[°] ¹ ⁴ ¹ 35 ² 47 ⁴ ¹⁴	<i>f. s.</i> 2,154 1,931 1,708 1,534	y.s. 718 643 569 508
4 56	5,586	343	9 [.] 4	5 53	1,399	464
	6,475	517	11 [.] 4	7 38	1,291	426
	7,271	716	13 [.] 4	9 30	1,200	395
7	7,999	937	15.3	11 28	1,128	368
8	8,669	1,180	17.1	13 28	1,075	349
9	9,291	1,445	18.9	15 28	1,040	334
10	9,876	1,731	20 ^{.6}	17 23	1,022	325
11	10,430	2,036	22 [.] 3	19 9	1,015	320
12	10,952	2,360	23 ^{.9}	20 54	1,009	314
13	11,448	2,703	25°5	22 38	1,003	309
14	11,922	3,065	27°0	24 21	998	303
15	12,379	3,443	28°5	26 2	993	297
16	12,804	3,835	30.0	27 40	990	292
17	13,217	4,242	31.2	29 15	987	287
18	13,618	4,663	33.0	30 48	985	282
19	14,007	5,099	34°4	32 19	984	277
20	14,385	5.550	35°9	33 48	984	273
21	14,750	6,015	37°3	35 15	985	268
22	15,103	6,489	38·8	36 40	987	264
23	15,445	6,970	40·2	38 3	990	260
24	15,775	7,459	41·6	39 24	993	256
25	16,092	7,956	43 ^{.0}	40 41	996	252
26	16,398	8,461	44 ^{.4}	41 54	1,000	248
27	16,691	8,974	45 ^{.7}	43 2	1,004	245
28	16,973	9.494	47°1	44 6	1,009	242
29	17,242	10,022	48°4	45 7	1,014	239
30	17,501	10,558	49°7	46 5	1,019	236
31	17,747	11,102	51.0	47 I	1,025	233
32	17,981	11,654	52.2	47 56	1,031	230
33	18,203	12,214	53.5	48 50	1,037	228
34	18,413	12,782	54°7	49 43	1,044	225
35	18,612	13,357	56°0	50 35	1,051	222
36	18,799	13,941	57°2	51 27	1,058	220
37	18,973	14.534	58·5	52 18	1,065	217
38	19,136	15,136	59·7	53 8	1,072	214
39	19,287	15,747	61·0	53 58	1,079	212
40	19,426	16,368	62·2	54 47	1,086	209
41	19,553	17,001	63·4	55 36	1,092	206
42	19,668	17,646	64·7	56 24	1,099	203
43	19,772	18,302	65·9	57 11	1,105	200
44	19,864	18,969	67·1	57 57	1,111	197
45	19,944	19,648	68·3	58 43	1,117	193

"It will be seen that the ranges go on increasing up to an-

"elevation of 45°, and would probably go on beyond an elevation "of 50° before reaching a maximum."—"Nature," Sept. 13, 1888, p. 468.

132. In July, 1888, two rounds were fired at an elevation of 30° which gave ranges of 17,500 and 18,344 yards, differing by 844 yards, although the wind appears to have been the same in both cases'. Again two rounds fired at an elevation of 35° gave ranges of 18,936 and 19,420 yards, which differ by 484 yards. Four rounds in all were fired at an elevation of 40° which gave ranges of 20,210, 20,236, 21,048 and 21,358 yards; so that the extreme difference of the ranges fired at this elevation was 1148 yards, fully justifying my suspicion of an error in range. A single round was fired at an elevation of 45° which gave a range of 21,800 yards, with a "favorable moderate" wind. This range is plainly far too great. In order to carry out experiments of this kind in a satisfactory manner it would be necessary to select a time when the atmosphere was at rest, and also to test the state of affairs in the upper regions of the air by sending up trial balloons². Other experiments might be made to test the effect of the wind blowing both up and down the range. It is clear that no theoretical calculations could agree with the above discordant results of experiment.

			,				
Elevation	30°	35°	40°	45°			
Ranges	17,500	19,420	20,236	21,800 yards			
23	18,344	18,936	20,210	>>			
Mean Ranges	17,922	19,178	20,223	21,800			
Difference of Mean Ranges 1,256 1,045 1,577 yards.							

133. Taking rounds fired in July, 1888³, we have

We are tolerably certain that as the elevation of the gun approaches 45°, the range must be approaching a maximum in a still atmosphere, and therefore that the difference of ranges corre-

¹ Proceedings of the R. A. Inst. xvi. p. 491.

² From experiments on the velocity of the wind on the Eiffel Tower 994 feet above the ground and at the Paris Meteorological Office 66 feet above the ground, the average *velocity* on the tower was found to be 16 miles an hour and that at the Office only 5 miles an hour. *Nature*, Vol. 41, p. 67.

³ Proceedings of the R. A. Inst. xvi. p. 491.

sponding to every increment of 5° in the elevation must be a *decreasing* quantity, and very different from the results stated above. In order to bring these results into something like order it will be necessary to apply corrections say of -200 and -1200 yds. respectively to the above mean ranges for elevations of 40° and 45° to allow for the effect of wind.

Elevations	30°	35°	40°	45°
Observed Mean Ranges	17,922	19,178	20,223	21,800 yds.
Corrections) for Wind	0?	0 ?	- 200	$-1,200^{\circ}$
ior wind)	17,922	19,178	20,023	20,600
Differences of rected Rang	> 1.400	845	577	yds.
Calculated Ra (m.v. 2360 f		18,612	19,426	19,944
Correction for	m.v. +174	+ 185	+193	+198
Ranges (m.v. 2375 f.	s.) } 17,675	18,797	19,619	20,142
		1,122	822	523
Differences of	above Range	s 247	381 404	4 458 yds.
or Difference	per cent.	1.4	2.0 2.0) 2.2

These deficiencies in the calculated ranges will be accounted for by the "jump", vertical "drift", wind, more pointed form of shot used in experiment, and perhaps a slight increase of the muzzle velocity due to increased elevation.

134. The calculation of the Range Table for the 9.2-inch wire gun up to an elevation of 45° with a muzzle velocity of 2360 f.s. was undertaken with a view to show the *exact results* given by the coefficients of resistance derived from my experiments with ogivalheaded projectiles struck with a radius of $1\frac{1}{2}$ diameter. Any needful allowance can afterwards be made for wind, a more pointed form of projectile, "jump", vertical "drift", &c.; but I have failed to obtain any evidence that my coefficients of resistance require to be reduced, as before explained. I much regret that the times of flight have not been published, because they are not nearly so much affected by the wind as ranges are.

118

All things considered I submit my calculated range table when there is no wind as a document far more instructive than the results of actual experiment made in windy weather, which was generally favourable to a long range.

135. The following is given as an example of the improved method pursued in the calculation of the Jubilee rounds, but in this case the muzzle velocity is 2375 instead of 2360 f.s., and the diameter of the shot is supposed to be 9.15 instead of 9.2 inches¹. The elevation of the gun is 40°. Although the resistance of the air varies as the square of the velocity from 2375 to 1300 f.s., it seems desirable to divide the corresponding trajectory into two arcs at least, in order to take account of the decreasing density of the air. Suppose that at the gun the Barometer stands at 30 inches and the Thermometer at 60° F. Table xx. gives $\log \tau = 9.9998$. This value is found corresponding to a height 4680 feet in Table xxI. We will suppose that the first arc rises to a height of 7800 feet above the gun. w = 380 lbs. Then

 $\begin{array}{ll} 4680+\frac{1}{2}\times 7800=8580 \; {\rm feet}\\ {\rm log}\; \tau=9.9391 \; {\rm by\; Table\; XXI}.\\ {\rm and} & {\rm Log}\; d^2\div w=9.34306;\\ u_{40}=2375\; {\rm cos\; 40^\circ}=1819.3\; {\rm f.\; s.} \end{array}$

$$\left(\frac{1000}{u_0}\right)^2 = \left(\frac{1000}{u_{40}}\right)^2 + \frac{k}{g}\frac{d^2}{w}\tau Q_{40} = 0.30212 + 1.56092 = 1.86304$$

This gives $u_0 = 732.66 \text{ f.s.}; \text{ and } \lambda = 0.4509.$

φ	λ	(x)	(y)	(t)	(v)
40°	0.4509	17494	9429	11726	3258

We must now find the value of ϕ for the upper end of the arc when the shot has risen a height of 7800 feet. Here

$$\{ ({}^{*0}y^{0}) - ({}^{\phi}y^{0}) \} \frac{u_{o}^{2}}{10^{4}g} = 7800,$$
$$({}^{\phi}y^{0}) = 4751,$$

or

which gives $\phi = 35^{\circ}$ nearly by the Table.

 ϕ λ (x) (y) (t) (v) 35° 0.4509 11499 4767 8857 2159

¹ Proceedings of the R. A. Inst. xvi. p. 492.

and therefore

$$u_{ss} x_{ss} = 9996 \text{ ft.}; \ u_{ss} = 7773.6 \text{ ft.}; \ u_{st} t_{ss} = 6''.530; \ v_{ss} = 1581.8 \text{ f.s.};$$
or
$$\left(\frac{1000}{u_{ss}}\right)^{2} = \left(\frac{1000}{u_{0}}\right)^{2} - \frac{k}{g} \frac{d^{2}}{w} \tau Q_{ss} = 1.8630 - 1.2664 = 0.5966;$$

$$\therefore \ u_{ss} = 1294.7 \text{ f.s.}$$

The next arc of the trajectory must be made to terminate where the velocity is about 1300 f.s. In order to obtain an approximate value of ϕ for this point, we may use the same value of log τ as before, then $(v_{\phi}) = 10^{3} \times 1300 \div u_{0} = 1774$ and we obtain $\phi = 30^{\circ}$, and $({}^{ss}y^{\circ}) - ({}^{so}y^{\circ}) = 2063$, which gives ${}_{ss}y_{so} = 3440$ feet. But as τ will be really less than we have supposed we may assume that ${}_{sy}y_{so}$ will be 3540 feet. Then

$$4680 + 7774 + \frac{1}{2} \times 3540 = 14224 \text{ feet}$$
$$\log \tau = 9.8510,$$

gives

$$= \left(\frac{1000}{2}\right)^2 + \frac{k}{2}\frac{d^2}{\tau} Q_{ee} = 0.5966 + 1.0339 = 1.6305;$$

$$u_0 / (u_{ss}) gw$$

$$u_0 = 783.14 \text{ f.s.}; \text{ and } \lambda = 0.4206 = 0.42 \text{ nearly}.$$

(3) The cubic law holds from velocity 1300 to 1100 f.s., but as we have no means of calculating x, y and t for the case where the resistance varies as the sixth power of the velocity, we will suppose the change in the coefficient of resistance to take place at a velocity near 1050 f.s.

$$(v_{\phi}) = 10^{\circ} \times 1050 \div u_{\phi} = 1341,$$

which gives $\phi = 22^{\circ}$, supposing the last arc to be continued so far. But as the resistance will be less than we have supposed it to be, we will next take the arc 30° to 21°, then

$$\{({}^{s_0}y^0) - ({}^{s_1}y^0)\} \times \frac{u_0^-}{g} \times 10^{-4} = 3126 \text{ feet.}$$

But as the resistance would be less than we have supposed it we may assume the rise in this arc to be a little more, say 3160 feet. Then $4680 + 7774 + 3529 + \frac{1}{2} 3160 = 17563$ gives $\log \tau = 9.7989$.

$$\left(\frac{1000}{u_0}\right)^s = \left(\frac{1000}{u_{s0}}\right)^s + \frac{K}{g}\frac{d^2}{w}\tau P_{s0} = 0.71105 + 0.90442 = 1.61547;$$

$$\therefore \ u_s = 852.25 \text{ f.s. and } \gamma = 0.2909.$$

$$\begin{split} \phi & \gamma & (\mathbf{x}) & (\mathbf{Y}) & (\mathbf{T}) & (\mathbf{v}) \\ 30^{\circ} & 0.2909 & 7303 & 2295 & 6474 \\ 21^{\circ} & , & \underline{4389} & \underline{882 \cdot 6} \\ & _{30}x_{21} = \overline{6575} \text{ ft.}; & _{30}y_{21} = \overline{3186 \cdot 9} \text{ ft.}; & _{30}t_{21} = \overline{6'' \cdot 282}; & v_{21} = \overline{1054 \cdot 8} \text{ f.s.} \\ & \left(\frac{1000}{u_{21}}\right)^{s} = \left(\frac{1000}{u_{0}}\right)^{s} - \frac{K}{g} \frac{d^{2}}{w} \tau P_{21} = 1 \cdot 61457 - 0 \cdot 56777 = 1 \cdot 04770; \\ & \therefore & u_{21} = 984 \cdot 6 \text{ f.s.} \end{split}$$

If we produced the above arc to where $\phi = 0$ the vertex would be reached at a height = $882.6 \times \frac{u_0^2}{q} \div 10^4 = 1991$ feet, or as the resistance will be lower than we have supposed we may assume the height to be 2060 feet. Then

 $4680 + 7774 + 3529 + 3186 + \frac{1}{2} \times 2060 = 20199$ feet, which gives $\log \tau = 9.7578.$

 $\left(\frac{1000}{u_0}\right)^3 = \left(\frac{1000}{u_{21}}\right)^3 + \frac{Kd^2}{g}\frac{d^2}{w}\tau P_{21} = 1.04770 + 0.34844 = 1.39614;$:. $u_0 = 894.72$ f.s. and $\gamma = 0.2066$.

Suppose the next arc to be taken from $\phi = 0$ to -20° .

$$({}^{0}Y^{20})\frac{u_{0}^{2}}{g} \times 10^{-4} = 604 \cdot 2 \times \frac{u_{0}^{2}}{g} 10^{-4} = 1503 \text{ feet.}$$

Then to find $\log \tau$ we have

$$4680 + 16558 - \frac{1}{2}1504 = 20486$$
 feet,

which gives $\log \tau = 9.7534$ by Table XXI.;

: $\gamma = 0.2045$; and $u_0 = 894.22$ f.s. as before.

$$\begin{array}{c} \phi & \gamma & (\mathbf{x}) & (\mathbf{Y}) & (\mathbf{T}) & (\mathbf{V}) \\ -20^{\circ} & 0.2045 & 3393 & -603\cdot3 & 3514 & 992\cdot7 \\ & _{o}x_{20} = 8438 \text{ ft.}; \\ & _{o}y_{20} = -1500\cdot3 \text{ ft.}; \\ & _{o}t_{20} = 9^{\prime\prime}\cdot767; \\ & v_{20} = 888\cdot2 \text{ fs.} \\ & \left(\frac{1000}{u_{_{20}}}\right)^{3} = \left(\frac{1000}{u_{_{0}}}\right)^{3} + \frac{K}{g}\frac{d^{3}}{w}\tau P_{20} = 1\cdot39614 + 0\cdot32551 = 1\cdot72165; \\ & \therefore u_{_{20}} = 834\cdot35 \text{ f.s.} \end{array}$$

Assuming that the same law holds for the next arc -20° to -40° ,

$$\binom{20}{9}Y^{40}$$
 × $\frac{u_0^3}{g}$ 10⁻⁴ = 2252 × $\frac{u_0^3}{g}$ 10⁻⁴ = 5600 feet.

In order to find $\log \tau$, we have

 $4680 + 16558 - 1500 - \frac{1}{2}5600 = 16938,$

which gives $\log \tau = 9.8087$.

$$\left(\frac{1000}{u_0}\right)^{s} = \left(\frac{1000}{u'_{20}}\right)^{s} - \frac{K}{g} \frac{d^2}{w} \tau P_{20} = 1.72165 - 0.36971 = 1.35194;$$

$$\therefore \ u_0 = 904.4 \text{ f. s. and } \gamma = 0.2399.$$

$$\begin{array}{c} \phi \quad \gamma \quad (\mathbf{x}) \quad (\mathbf{Y}) \quad (\mathbf{T}) \quad (\mathbf{V}) \\ -40^{\circ} \ 0.2399 \quad 7020 \quad -2767 \quad 7663 \quad 1086 \\ -20^{\circ} \quad , \quad 3357 \quad -594\cdot 8 \quad 3494 \\ & \quad \mathbf{y}_{0} x_{40} = \overline{9307} \, \mathrm{ft.}; \, {}_{20} y_{40} = -\overline{5519\cdot 1} \, \mathrm{ft.}; \, {}_{20} t_{40} = \overline{11''\cdot 712}; \, v'_{40} = \overline{982\cdot 1} \, \mathrm{f.s.} \\ \mathrm{and} \ \left(\frac{1000}{u'_{40}}\right)^{\mathrm{s}} = \left(\frac{1000}{u_{0}}\right)^{\mathrm{s}} + \frac{K}{g} \frac{d^{2}}{w} \tau P_{40} = 1\cdot 35194 + 1\cdot 00789 = 2\cdot 35983; \\ \quad \therefore \quad u'_{40} = 751\cdot 12 \, \mathrm{f.s.} \end{array}$$

The shot is now +165580 - 15003 - 55191 = 95386 feet above the level of the muzzle, and therefore the mean height above muzzle will be 4769 feet which must be diminished by 13 feet, because the arc we intend to calculate extends to 27 feet below the level of the muzzle. Therefore

$$4769 - 13 + 4680 = 9436$$
 feet,
log $\tau = 9.9257$.

which gives

THE JUBILEE ROUNDS.

$$\left(\frac{1000}{u_0}\right)^3 = \left(\frac{1000}{u'_{40}}\right)^3 - \frac{K}{g} \frac{d^2}{w} \tau P_{40} = 2.3598 - 1.3195 = 1.0403 + \frac{1000}{1000} + \frac{1000$$

The shot has to fall vertically 9538.6 + 27 = 9565.6 feet. And

$$9565.6 \times 10^4 \div \frac{u_0^2}{g} = 3161,$$

which being added to 2442 the value of $({}^{\circ}Y^{*0})$ gives $({}^{\circ}Y^{\phi}) = 5603$, and referring to the Table it will be found that ϕ falls between -54° and -55° .

φ	γ	(x)	(Y)	(T)	(v)	
-54	° 0.4081	9039	- 5337	11069	1096	
- 55	o "	9251	$- \frac{5634}{}$	11399	1105	
which giv	res					
- 54	°·9 ,.	9230	- 5603	11366	1106	
But - 40	° [.] 0 "	6391	-2442	7300		
40254-9	= 8587 ft.; 40	$y_{54:9} = -95$	65.6ft.; 40t5	"=12"·463;	v' ₅₄₉ =1091	f.s.

But $_{20}x_{40} = 9307$, $_{20}y_{40} = -5519\cdot1$, $_{20}t_{40} = 11\cdot713$ $_{0}x_{20} = 8438$, $_{0}y_{20} = -1500\cdot3$, $_{0}t_{20} = 9\cdot767$ $_{0}x_{549} = 26332$ ft. $_{40}y_{549} = -16585\cdot0$ ft.; $_{40}t_{549} = 33\cdot943$

And $_{40}x_0 = 32520$, $_{40}y_0 = +16558.0$, $_{40}t_0 = 28.548$ $_{40}X_{54.9} = 19617$ yds. $_{40}Y_{54.9} = -27.0$ ft. $_{40}T_{54.9} = 62.491$ 123

CHAPTER VI.

ON THE MOVEMENT OF ELONGATED PROJECTILES.

" La détermination du mouvement des projectiles oblongs, "lancés par les armes à feu rayées, est un problème tres-complexe "qui pris dans toute sa généralité, présente de grandes difficultés." St-ROBERT.

136. In the preceding calculations it has been supposed that the projectile moved in the vertical plane of projection. This would be the case very nearly, if the projectile was spherical and had its centre of gravity coincident with the centre of its figure, the air being at rest. But when an elongated projectile is fired from a rifled gun, the combined action of gravity and of the resistance of the air acting upon it, causes what is called a lateral "drift." The original explanation of this drift was made to depend upon a supposed greater pressure of the air upon the elongated projectile from below than from above, so that the greater friction of the air on the underside of the rotating projectile caused it to deviate to the right or left, according to the direction of its rotation. This difference of friction above and under the projectile may have some slight effect, but it would not be sufficient to produce the amount of lateral "drift" commonly observed. Even if we adopted this explanation we should have a vertical drift also caused by the excess of the pressure of the air upwards on the projectile.

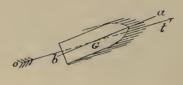
137. Magnus gave the true explanation of all drift in 1852, which he illustrated by experiments with the gyroscope. He says: "From these experiments, we may conclude that the "deviation of elongated projectiles is caused by the resistance of "the air seeking to elevate the apex. The elevation thereby "produced is, however, scarcely perceptible, for during rotation "the forces acting on the mass of the projectile so combine them-"selves, that the apex, instead of being elevated, is moved side-"ways, and indeed, towards the right when the projectile rotates "to the right. In consequence of this motion to the right, the "resistance of the air presses the projectile's centre of gravity "towards the same side, and thus produces the deviation. At "the same time the apex sinks, and thus it appears as if the "pressure of the air against the hinder part of the projectile was "greater than that against the fore part, whereas, in fact, this "pressure is greatest on that part of the axis which is placed "between the centre of gravity and the apex"."

138. St-Robert published a mathematical treatise on the motion of elongated projectiles², in which he confirmed the explanation of drift given by Magnus. He expressed the result of his investigations in the following words: "Tandis que le "centre de gravité du projectile parcourt la trajectoire, celui-ci "tourne uniformément sur son axe de figure, qui reste immobile "dans son intérieur et qui tourne lentement dans l'espace autour "de la tangente à la trajectoire⁸."

139. Mayevski also published a long paper, De l'influence du mouvement de rotation sur la trajectoire des projectiles oblongs dans l'air⁴, in which he in a great measure followed St-Robert, and attempted to apply his results to a particular example, where the velocity of projection was low. But he was in error as he explained afterwards⁵ when he supposed that the axis of the projectile made several complete revolutions about the tangent. The axis really made oscillations about the tangent whose ampli-

¹ Scientific Memoirs r. 1853, p. 228, and Abweichung der Geschosse, 1860, p. 35.

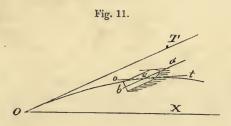
 ² Journal des Armes spéciales, 1860, and Mémoires Scientifiques, 1. pp. 179-312.
 ³ Ib. p. 228.


⁴ Revue Technologie Militaire, 1866, pp. 1-176.

⁵ Traité de Balistique, p. x.

tude did not exceed π for the *low* velocity of this projectile. Mayevski has stated the result he arrived at as follows: "Tandis "que le centre de gravité du projectile décrit une certaine trajec-"toire dans l'air, le projectile tourne autour de son axe de figure "avec une vitesse angulaire sensiblement égale à la vitesse an-"gulaire initiale, et l'axe de figure a un mouvement de rotation "autour de la tangente qui s'abaisse pendant toute la durée du "mouvement¹." He resolves the resistance of the air as follows: "Décomposons la résultante ρ de la résistance en trois autres "résistances: l'une dirigée en sens contraire de la tangente, "l'autre perpendiculaire à la tangente dans le plan horizontal "et la troisième perpendiculaire à la tangente dans le plan "vertical." And then Mayevski explains this latter force would raise or depress the centre of gravity of the projectile according as its apex was above or below the tangent.

140. Suppose that at any instant the plane of the paper passes through the axis of the projectile ba, and the tangent to the trajectory of at the point G, drawn in the direction of the


Fig. 10.

motion of the projectile. Then by what goes before, it appears that the resistance of the air will impart to the centre of gravity Gof the projectile a motion of *translation* from the tangent ot in the plane of the paper, and towards that side, where the apex of the projectile is found. Also the resultant pressure of the air on the projectile will cut the axis between G and the apex of the shot. This will tend to increase the angle tGa, which however it will not affect sensibly, but will cause the axis Gato *rotate* about the tangent Gt, in the same direction as the projectile rotates about its own axis.

¹ Traité de Balistique, p. 236. ² Ib. p. 239.

141. The attention of Magnus seems to have been confined to the explanation of *lateral* drift of elongated projectiles. But his explanation of that phenomenon requires in addition the consideration of a drift in the *vertical* direction. It also appears to be a common notion that, if an elongated projectile is *perfectly steady* when it leaves a rifled gun, it will continue to move on steadily in the direction of its axis. It is not so, however, for suppose OT, Fig. 11, to be the direction of projection, the rapid

rotation of the projectile about its axis will tend to keep that axis ab parallel to OT. But the action of gravity upon the projectile will cause G, its centre of gravity, to move in a curve, so that the axis ba will become inclined to Gt the direction of motion of G. The resistance of the air will thus impart a motion of translation to the projectile upwards, and will also cause Gato begin to describe a conical surface about Gt, as already explained. This vertical drift is the origin of all drift in a steady projectile.

142. Didion noticed a drift of elongated projectiles in a vertical direction, and in a practical case remarked it was equivalent to a reduction in the force of gravity in the ratio of 9.809 to 7.72, and then he adds the remark "Outre cette dérivation "verticale il en existe une autre, qui est horizontale, et du même "genre, et qu'il importe aussi de connaître, afin de diriger le tir "en conséquence¹."

143. Various successive positions assumed by an elongated projectile shortly after it leaves the rifled gun are shown by the

¹ Traité de Balistique, 1860, p. 441.

127

diagrams A, B, C, D and E, Fig. 12, when viewed by an eye looking in a direction parallel to the tangent to the trajectory in each case. The curved arrows denote the direction of rotation of the projectile about its own axis, and the straight arrows show the direction in which the resistance of the air acting on the side of the projectile produces a motion of translation of the projectile. When a steady projectile has just left the gun, its base only would be seen, as in diagram A. After a short time the Figure B would represent the appearance of the projectile, where the drift would be entirely in a vertical direction, and upwards as denoted by the arrow: and the resistance of the air would cause the point of the projectile to begin to turn to the right. In a short time after, Figure C would represent the state of the case. Here the drift would be in the direction denoted by the arrow. If ab be taken to represent the drift in magnitude and direction at this time, then it may be re-

solved into a horizontal drift ac to the right, and a vertical drift cb upwards. The axis of the projectile will go on rotating about the tangent to the trajectory till the projectile comes into the position D, where the drift is entirely horizontal and to the right as indicated by the arrow. When the projectile has come to the position D the circumstances of the case will change slowly, for the tangent Gt to the trajectory is always dipping downwards, and the action of the resistance of the air in this case will cause the axis of the shot Ga also to dip downwards. If the tangent Gtdips more rapidly than the axis Ga, then the projectile will tend to return to the position shown in Figure C, and the motion will become oscillatory as in the case mentioned by Mayevski (139). This will be likely to happen when the trajectory is much curved, that is, when the velocity of the projectile is low as in the case referred to. But if the axis Ga dips faster than the tangent Gt, then the projectile will take the position represented by Figure E, where the drift will be in the direction indicated by the arrow. And if ab represent the drift in magnitude and direction, it may be resolved into a drift ac vertically downwards, and cb horizontally to the right. And afterwards the axis Ga may go on rotating about the tangent Gt and complete one or more revolutions. It should be observed that when the point of the shot is to the right of the vertical plane passing through the tangent, the tangent Gt to the trajectory and the axis Ga of the projectile are both dipping downwards, the rotation of the shot about its own axis being right handed as we have supposed. But when the apex of the projectile is to the left of the vertical plane through the tangent, the tangent Gt is dipping downwards but the axis Ga is rising upwards. Hence we may conclude that the drift will be in operation a much longer time to the right than to the left, when the projectile has a right-handed rotation about its own axis.

144. We thus find that the drift *upwards* is the beginning of all drift, and continues in operation from A to B. After passing the position B the drift upwards gradually decreases and vanishes at the position D. But the *horizontal* drift begins to make its appearance as soon as the projectile leaves the position B and gradually increases till it comes to the position D.

145. There can therefore no longer be any doubt that an elongated projectile, although it may leave the gun with perfect steadiness, soon begins to acquire the gyratory motion described by Magnus, St-Robert and Mayevski. At any instant the resistance of the air endeavours to push the projectile bodily from the tangent to its trajectory towards that side on which the apex of the projectile is situated (140). If the axis of the projectile makes one or more complete revolutions about the tangent to the trajectory then there will be a drift in every direction as seen from the gun. But we have no reason to assume that the sum of the vertical drift will vanish, so that the resultant drift will be entirely horizontal. With a right-hand rotation of the projectile, although there may be at times a drift to the left, that is very much exceeded by the drift to the right. So also there may be a drift downwards as well as upwards, but it seems to me that the total drift both in a vertical and horizontal direction will be in a great measure determined by what takes place near the gun, or while the projectile passes at a high velocity from position A to D, Fig. 12, and consequently that the projectile will be lifted up and made to move as if it had been fired at a somewhat higher elevation.

В.

129

130 ON THE MOVEMENT OF ELONGATED PROJECTILES.

146. From what has been said, it appears to be necessary in calculating trajectories to allow an increase of elevation on account of the *vertical* drift, just in the same manner as the "jump" of the gun is allowed for. But this correction will not be quite so satisfactory, because the *vertical* drift does not act instantaneously at the muzzle, but goes on accumulating gradually while the projectile is moving in its trajectory, as already explained (143).

147. As the diagrams A, B, C, D and E, Fig. 12, represent the cross sections of the path swept out by the elongated projectile in its passage through the air, it is evident that, strictly speaking, the sectional area of the projectile at A will afterwards require to be increased, or that the coefficients of resistance must be increased, and not diminished according to Krupp's doctrine. It may also be remarked that as the projectile rises, the density of the air and therefore its resistance will diminish, and Tables xx. and xxI. have been prepared to assist in introducing the necessary corrections. But when the projectile rises only to a moderate height, the reduced resistance on this account may be supposed to balance the increased resistance arising from the inclination of the axis of the projectile to the direction of its motion. In such a case, however, a small reduction in the coefficients of resistance will be proper, if the head of the projectile be more pointed than an ogival struck with a radius of one diameter and a half.

148. I have calculated the following ranges for comparison with the Range Tables of the 4-inch B.L. gun, making d = 4 in.; w = 25 lbs.; muzzle velocity = 1900 f.s.; jump 6 minutes. In the first Table I have arranged the results so as to show the comparative ranges and times of flight, given by calculation and experiment for elevations of 1° to 15°. In these calculations the coefficients of Table IV. were used, which were obtained from experiments with ogival-headed shot struck with a radius of one diameter and a half, and no allowance was made for the decreasing density of the air, or for a more acutely pointed shot.

		Range		Time of Flight			
Eleva- tion	By R. Table	By Cal- culation	Difference	By R. Table	By Cal- culation	Difference	
1° 2 3 4 5 6 7 8 9 10 11 12 13 14 15	yards 1083 1811 2400 2917 3392 3820 4213 4576 4905 5215 5514 5800 6086 6608	yards 1049 1817 2406 2901 3338 3738 4074 4432 4741 5027 5307 5562 5804 6249	yards - 34 + 6 + 6 - 16 - 54 - 82 - 139 - 144 - 164 - 188 - 207 - 238 - 282 - 359	1 ¹¹ .97 3 ¹¹ .72 5 ¹¹ .34 6 ¹¹ .93 8 ¹¹ .44 9 ¹¹ .85 11 ¹¹ .28 12 ¹¹ .65 13 ¹¹ .93 15 ¹¹ .65 13 ¹¹ .93 15 ¹¹ .65 16 ¹¹ .39 17 ¹¹ .50 18 ¹¹ .84 	1 ¹¹ ·93 3 ¹¹ ·71 5 ¹¹ ·34 6 ¹¹ ·84 8 ¹¹ ·24 9 ¹¹ ·58 10 ¹¹ ·90 12 ¹¹ ·14 13 ¹¹ ·36 14 ¹¹ ·55 15 ¹¹ ·73 16 ¹¹ ·86 17 ¹¹ ·99 	$\begin{array}{c} - 0'' \cdot 04 \\ - 0'' \cdot 01 \\ 0'' \cdot 00 \\ - 0'' \cdot 09 \\ - 0'' \cdot 20 \\ - 0'' \cdot 27 \\ - 0'' \cdot 38 \\ - 0'' \cdot 51 \\ - 0'' \cdot 61 \\ - 0'' \cdot 61 \\ - 0'' \cdot 64 \\ - 0'' \cdot 65 \\ \hline \\ - 1'' \cdot 12 \end{array}$	

149. I have taken from the Range Table the elevations and times of flight corresponding to the above ranges obtained by calculation. I have also used the horizontal muzzle velocities in calculating by the General Tables the times over the same ranges, and the remaining velocities. The results are stated in the following Table:

		Elevatio	on	Tin	ne of F	light	Calc. Hori-	General Tables	
Range	By R. Table	By Cal- culation	Difference	By R. Table	By Cal- culation	Difference	zontal Striking Velocity		Hori- zontal Velocity
yards 1049 1817 2406 2901 3338 4074 4432 4741 5027 5307 5562 5804 	0° 58′ 2° 1′ 3° 1′ 3° 58′ 4° 53′ 5° 48′ 6° 38′ 7° 35′ 7° 35′ 7° 35′ 7° 35′ 7° 35′ 10° 18′ 11° 10′ 12° 1′	I° 2° 3° 4° 5° 6° 7° 8° 9° 10° 11° 12° 13° 15°	$\begin{array}{c} + 0^{\circ} & 2' \\ - 0^{\circ} & 1' \\ - 0^{\circ} & 1' \\ + 0^{\circ} & 2' \\ + 0^{\circ} & 12' \\ + 0^{\circ} & 22' \\ + 0^{\circ} & 22' \\ + 0^{\circ} & 22' \\ + 0^{\circ} & 31' \\ + 0^{\circ} & 37' \\ + 0^{\circ} & 42' \\ + 0^{\circ} & 50' \\ + 0^{\circ} & 59' \\ \hline \\ \hline \\ + 1^{\circ} & 24' \end{array}$	1".90 3".73 5".36 6".86 8".26 9".57 10".76 13".29 14".41 15".53 16".67 17".52 19".55	1"'93 3"'71 5"34 6"84 8"*24 9"58 10"90 12"'14 13"36 14"55 15"73 16"86 17"99 20"'22	$\begin{array}{c} + 0'' \cdot 03 \\ - 0'' \cdot 02 \\ - 0'' \cdot 02 \\ - 0'' \cdot 02 \\ + 0'' \cdot 01 \\ + 0'' \cdot 01 \\ + 0'' \cdot 04 \\ + 0'' \cdot 07 \\ + 0'' \cdot 07 \\ + 0'' \cdot 14 \\ + 0'' \cdot 20 \\ + 0'' \cdot 47 \\ \hline \\ + 0'' \cdot 67 \end{array}$	y.s. 476 386 340 302 289 274 265 255 246 238 231 225 208	1"'92 3"'72 5":35 6"'85 8":28 9":65 10":86 12":22 13":44 14":61 15":80 16":94 18":04 	y. s. 474 386 342 301 286 275 263 254 246 237 230 223 211

Here the difference of elevations in each case seems to be 9-2

132 ON THE MOVEMENT OF ELONGATED PROJECTILES.

the correction required for vertical drift, inasmuch as that correction gives both ranges and times of flight satisfactorily.

150. It must be borne in mind that my coefficients of resistance were mostly derived from the motion of ogival-headed projectiles fired through ten screens placed 50 yards apart, at elevations calculated to give ranges of 600 or 700 yards. Those projectiles, which passed through all the ten screens, must in general have been steady in their flight. The 5-inch gun was a remarkably good one, which by its accurate shooting gave many records, and consequently many values of the coefficient K for velocities between 1000 and 1650 f.s. But those projectiles, which were unsteady, passed through only a few screens giving very few records, and therefore they could have only a very limited effect on the final results. The coefficients of resistance for velocities 1000 to 1650 f.s. were derived from experiments made with ogival-headed projectiles in 1867, 8 by the use of 3, 5, 7 and 9-inch M.L. guns. This variation in the calibres of the guns was adopted because it was necessary to ascertain in the first place, whether the resistance of the air did really vary as the square of the diameter of the projectile. That law having been found satisfactory, the coefficients of resistance for velocities 1650 to 2250 f.s. were obtained by experiments in 1878, 9 with a new 6-inch B.L. Armstrong gun, and in 1880 these coefficients were extended to velocity 2780 f.s. by experiments made with a new 8-inch B.L. Armstrong gun. The results given by these two guns proved perfectly consistent, as will be found by comparing the Report of Experiments printed in 1879 with the Final Report of 1880. I have the best authority for stating that no English guns constructed since 1880 have hitherto given evidence of any marked improvement in the centering of their projectiles. Numerous examples have been worked out to explain the use of the Tables, and to show how well the calculated agree with the experimental results of recent guns, so long as the clevation of the gun is low, for in that case the projectiles move nearly in the direction of their axes, and much as they did when my experiments were made. These comparisons of calculated and experimental results have been found perfectly satisfactory for velocities 1900 to 960 f.s. and for ranges up to 3000 yards. That is full and complete evidence of the accuracy of my coefficients of resistance.

ON THE MOVEMENT OF ELONGATED PROJECTILES.

151. As the elevation of the 4-inch gun goes on increasing above 4°, the calculated ranges and times of flight gradually fall short more and more of these values given in the Range Table for the specified elevation (148), but they are consistent with those given for a somewhat lower elevation (149). There is no reason for supposing that the resistance of the air to an elongated projectile fired at an elevation greater than 4° is less than that to the same projectile fired at a lower elevation, excepting for the decreasing density of the air for which special provision has to be made (92). Certainly this discrepancy cannot be corrected by simply reducing the coefficients of resistance as Captain May, R.N., has discovered. For he has observed that "... when the "coefficients used in calculating the time of flight are the same "as those which were found to give results agreeing with practice "when used for the calculation of the range, it has often been "found that the calculated time falls short of the observed time; "this would seem to point to the range being prolonged by a "kite-like action of the shell, and if this is so, it may be that "the coefficients which give bad results when applied to the cal-"culation of the range may not be so erroneous as they appear"."

If the experiments here referred to were good, and if my coefficients had been reduced 5, 10 or 15 per cent.² to make the calculated agree with the observed range, it might naturally be expected that the calculated time of flight would fall short of the observed time of flight—because the resistance of the air to the projectile had been unduly reduced. But if my coefficients of resistance had been *properly used*, I feel satisfied that, if not for the given elevation, then for some slightly reduced elevation the calculated range and time of flight would have been found consistent with experiment as in (149). And the proper way to bring calculation into agreement with experiment will be, to make the necessary addition to the elevation, which is accounted for by the *vertical* drift or "the kite-like action" of the shell (143).

152. From the note Captain May appends, I fear he has also made use of some faulty methods of calculation, for he remarks :—"Curiously enough it is usually at comparatively short "ranges, where the trajectory is but little curved that the ob-

¹ Proceedings of the R. A. Inst. xiv. p. 369. ² Ib. p. 364.

133

"served time of flight has been found to differ most from the "calculated time. At longer ranges with the same gun they "often agree well¹." Now I have calculated ranges and times of flight for Captain May's own model Range Table² for elevations of 1°, 2°, 3° and 4° the full extent of his Table, and found throughout a most precise agreement between calculation and experiment up to a range of 4000 yards (123). This being the case for low elevations, confirmed by the General Tables (124), I cannot suppose that projectiles fired at higher elevations would require any reduction in the coefficients of resistance, except as above observed so far as the density of the air becomes reduced, and for that I have prepared special corrections.

153. Special experiments were made with the 4-inch B.L. gun in 1887 to test my coefficients of resistance on a long range. I have no confidence in velocities measured by *galvanic* chronographs at considerable distances from the gun. Therefore the initial velocity of each round and the time of flight over a range of 2000 to 3000 yards were measured by the same chronograph, and afterwards the mean experimental and mean calculated times of flight were compared. The results showed that the coefficients were quite satisfactory, as we have found them to be by the use of the Range Table of the same gun for even longer Ranges (125) and (126).

¹ Proceedings of the R. A. Inst. xiv. p. 369. ² Ib. p. 356.

CHAPTER VII.

PROPOSED LAWS OF THE RESISTANCE OF THE AIR TO ELONGATED PROJECTILES.

154. My method of experimenting gave the coefficients of resistance in a form directly applicable to the calculation of General Tables and trajectories. The expression of the law of resistance of the air in terms of the velocity of the projectile was not therefore required for my own purposes. But as such laws seemed to be desired, I endeavoured to give them from time to time for ogival-headed projectiles. The average of the times at which the equidistant screens were passed in the trial of the instrument in 1865 gave a value of $\Delta^2 t$ nearly constant, and thence it was inferred that the resistance varied approximately as the cube of the velocity (38)¹.

155. As there have been many laws of resistance published for ogival-headed projectiles since the commencement of my ballistic experiments, I now propose to state them in the order in which the principal of them appeared and also to apply them, as far as possible, to calculate a standard example, which has been already used for a similar purpose by Major Mackinlay, R.A.². The problem will be to find in each case, by the General Tables, in what Range a 10-inch, or 25.4 c.m. ogival-headed projectile would have its velocity reduced :

(i) from 1700 to 1300 f.s.; or from 518.15 to 396.23 m.s., and

(ii) from 1300 to 1100 f.s.; or from 396.23 to 335.27 m.s. where w = 412.54 lbs., or 187.12 kgs. which give

$$d^2 \div w = 0.2424.$$

¹ Reports, &c. 1865-1870, p. 8. ² Proceedings of the R. A. Inst. xiv. p. 18.

The ranges calculated by the English Tables will be reduced to the French standard, where $\omega = 527$ grains.

156. We have seen, (106), that my Tables published in 1868, when applied to the 10-inch ogival-headed shell, gave a reduction

(i) from 1700 to 1300 f.s. in velocity in a range of 2534 yards, when reduced to the French standard. And

(ii) from 1300 to 1100 f.s. in a range of 1781 yards.....(a).

In 1871, from the results of my experiments in 1867, 8^1 , I stated that for ogival-headed projectiles, the resistance of the air might be taken to vary roughly as follows :

.(b).

		$v > 1350 \text{ f.s.}; f \propto v^2$	•
		$v < 1350 > 1100$ f.s.; $f \propto v^3$	• • • • • • • • •
		$v < 1100 > 900 \text{ f.s.}; f \propto v^6$	
My C	General	Table, 1871, gave ranges	
		(i) of 2584 yards,	
d		(ii) of 1789 yards.	

and

and

a

157. The formulæ deduced by Mayevski² from the so-called "résultats des expériences *russes* et anglaises" 1872 were

158. My General Tables recalculated in 1873^s gave ranges

(i) of 2583 yards,(ii) of 1790 yards.

The experiments made with my chronograph 1878, 9^4 gave in addition to the laws (b),

and
$$v < 1010 > 830 \text{ f.s.}; f \propto v^3$$

 $v < 830 > 430 \text{ f.s.}; f \propto v^2$ (d),

¹ Remaining Velocities, 1871, p. 48, and Proceedings of the R. A. Inst. vii. p. 392.

- ² Traité de Balistique, p. 42. ³ Motion of Projectiles.
- · 4 Report, &c. Part II. 1879.

136

and the General Table founded on these experiments gaveranges(i) of 2584 yards,and(ii) of 1785 yards.

159. When Siacci published his Ballistic Tables, (1880), he professed to have founded them upon the so-called "russe ed "inglesi" results, but he modified Mayevski's laws¹ (c), and brought them more nearly into agreement with my laws (b) and (d), except for low velocities, as follows:

Siacci's Table D(v), 1880, gives ranges

(i) of 2522 yards,

and

(ii) of 1814 yards.

160. Krupp did not attempt to assign any laws of resistance, but they differed little from my own, when my coefficients were reduced 9 or 10 per cent. His Table (1881), gives ranges

(i) of 2847 yards,
(ii) of 2209 yards.

161. Mayevski (1883), professes to have deduced certain laws from Krupp's Meppen experiments which Ingalls has expressed as follows in English measure²:

 $\begin{array}{c|c} v < 2300 > 1370 \text{ f.s. }; & f \propto v^2 \\ v < 1370 > 1230 \text{ f.s. }; & f \propto v^3 \\ v < 1230 > & 970 \text{ f.s. }; & f \propto v^5 \\ v < & 970 > & 790 \text{ f.s. }; & f \propto v^3 \\ v < & 790 > & 0 \text{ f.s. }; & f \propto v^2 \end{array}$ (f).

The Mayevski-Krupp Table (1873), gives ranges

(ii) of 2176 yards.

¹ Giornale d' Artiglieria, 1880.

² Exterior Ballistics, p. 29.

and

and

Here it is manifest that Mayevski completely abandons his original laws (c) and approximates to my laws (b) and (d).

162. Hojel professes to have deduced similar laws from the same experiments, upon which Ingalls remarks¹, that "Hojel has "considered it necessary to employ *fractional exponents*, thereby "sacrificing simplicity without apparently gaining in accuracy." He afterwards compared the results given by the formulæ of Mayevski and Hojel, and by the "Table de Krupp" for velocities 2300 to 400 f.s. and found they agreed², so that we may take the law expressed by Mayevski to represent all three.

163. From my Final Report (1880), I deduced the following laws³:

 $\begin{array}{ll} v &> 1300 \mbox{ f.s. }; \ f \propto v^3, \\ v < 1300 > 1100 \mbox{ f.s. }; \ f \propto v^3, \\ v < 1100 > 1040 \mbox{ f.s. }; \ f \propto v^8, \\ v < 1040 > \ 850 \mbox{ f.s. }; \ f \propto v^3, \\ v < \ 850 > \ 100 \mbox{ f.s. }; \ f \propto v^2. \end{array}$

164. Ingalls⁴ has deduced the following laws from the same Report, 1880:

 $\begin{array}{c|c} v &> 1330 \text{ f.s. }; \ f \propto v^2 \\ v < 1330 > 1120 \text{ f.s. }; \ f \propto v^3 \\ v < 1120 > 990 \text{ f.s. }; \ f \propto v^6 \\ v < 990 > 790 \text{ f.s. }; \ f \propto v^3 \\ v < 790 > 100 \text{ f.s. }; \ f \propto v^2 \end{array} \right\} \dots (g).$

Ingalls employed these results when he calculated his Tables, which give ranges

	(i)	of	2595	yards,
and	(ii)	of	1775	yards.

and

My own General Tables, (1889), give ranges

(i)	of	2566	yards,
-----	----	------	--------

(ii) of 1781 yards.

¹ Exterior Ballistics, p. 30. ² Ib. p. 31. ³ Nature, xxx11. p. 605. ⁴ Exterior Ballistics, 1886, p. 36. My Laws of Resistance (1889), finally adopted after the recent revision of all my experiments, will be found in Tables (III) and (IV).

165. The following is a summary of the results above obtained:

	(1)	(11)	(III)		
Reduction of velocit	to 1300 f.s.	from 1300 f.s. to 1100 f.s.	or { from 1700 f.s. to 1100 f.s.		
Bashforth 1868	8, 2534 yards,	1781 yards;	or 4315 yards		
" 1871	l, 2 584 " ,	1789 ";	or 4373 "		
" 1873	3, 2583 " ,	1790 ";	or 4373 ,,		
" 1879), 2584 ", "	1785 ";	or 4369 "		
Siacci 1880), 2522 ", ,	1814 ";	or 4336 "		
Krupp 1881	, 2847 ,, ,	2209 ";	or 5056 "		
Mayevski 1883	3,2819 ",	2176 ";	or 4995 "		
Ingalls 1886	3, 2595 " ,	1775 ";	or 4370 "		
Bashforth 1889), 2566 ", ",	1781 ";	or 4347 "		

I have now noticed in chronological order the works of those writers on Ballistics mentioned by Ingalls as the authors of Ballistic Tables or of Laws of Resistance of the air to the Motion of Projectiles.

139

CHAPTER VIII.

CONCLUDING REMARKS.

166. As the accuracy of my coefficients of resistance has been questioned, I have gone carefully over all my experimental rounds (53)—(72) and given full particulars of the values of Kso obtained (73)—(81). I have also used the means of these coefficients to calculate by Bernoulli's exact method the ranges and times of flight of projectiles fired from the 4-inch B.L. gun (125). The General Tables have also been used to calculate the times of flight of projectiles fired from the same gun (126).

And similar calculations have been made for the 12-inch B.L. gun (123). In every case the agreement between calculation and experiment has been found to be far closer than could reasonably have been expected. The natural conclusion seems to be that my coefficients are well adapted for the calculation of the motion of elongated projectiles fired from *recent* guns for ranges of these guns up to 3000 or 4000 yards, and therefore for all ranges so long as the motion of the projectile in practice corresponds to the motion of the projectiles in my experiments, that is, so long as the projectile moves nearly in the direction of its axis.

167. But as the elevation of the gun increases above 4° or 5° the vertical drift (141) coming into action raises up the elongated projectile so as to give an increased range and time of flight. In such cases my proposal is to *correct the elevation* so that the calculated range and time of flight may agree with those observed quantities. By the careful calculation of good Range Tables it is probable that the law of vertical drift might be

ascertained for elongated projectiles. On the other hand it has been proposed by the Krupp party to *reduce my coefficients* of resistance. But this mode of correcting for range has been found to give too short a time of flight (151), and consequently an erroneous striking velocity. We may now proceed to consider on what authority this proposed reduction of my coefficients depends.

168. Mayevski published the results of some few rounds in 1872, for both spherical and ogival-headed shot¹ accompanied by a statement that these experiments were made in 1868, 9. "Les "expériences de St Pétersbourg sur la résistance de l'air au "mouvement des projectiles *sphériques* et oblongs ont été faites "par nous en 1868 et 1869 et *leurs résultats sont pour la première* "fois publiés dans notre traité" (1872). "Afin que les expressions "de la résistance représentent, avec une approximation suffisante, "les résultats de nos expériences et ceux des expériences anglaises, "faites avec des appareils perfectionnés…pour les projectiles sphé "riques…pour les projectiles oblongs²."

Thus Mayevski both here in his preface and in his work fully acknowledges the use he had made of my published results, for he remarks "Aussi pour compléter les données se rapportant "aux projectiles de forts calibres nous avons profité des tableaux

¹ Note.	The fo	ollowing is	a sta	tement	of a	ll the	resul	ts of	f experiment	nts given by
Mayevski for	r both	spherical	and	oblong	pro	ectiles	in	\mathbf{his}	Balistique	Extérieure,
1872, p. 39.										

U m. s.	ρ΄	<i>ปี</i> ni. s.	ρ΄	U m. s.	ρ΄	V m. s.	ρ΄ 	U m. s.	ρ΄		
Spherical Projectiles.											
227 234 262	0,0295 0,0267 0,0361	278 287 330	0,0424 0,0411 0,0491	341 342 380	0,0519 0,0582 0,0554	384 408 415	0,0602 0,0587 0,0625	457 463 475 527	0,0598 0,0611 0,0625 0,0619		
			Ol	olong	Projecti	les.					
172 207 239	0,0151 0,0137 0,0148	247 266 282	0,0170 0,0160 0,0163	304 307 317	0,0221 0,0158 0,02 <u>5</u> 9	319 320 329	0,0174 0,0299 0,0338	337 360 401 409	0,0341 0,0384 0,0450 0,0430		

² Traité de Balistique extérieure, 1872, p. vi.

"des vitesses décroissantes' déduites par M. Bashforth de ses ex-"périences faites en 1868 au moyen de son chronographe...Nous "avons calculé d'après les résultats insérés dans ces tableaux les "valeurs de la résistance correspondantes à différentes vitesses²."

169. Afterwards Mayevski gives in a tabular form some values of Didion's ρ' derived from the published results of my labours, as well as those he had deduced from his own experiments³, the former being more numerous than the latter. So far everything was as it should be. But unfortunately, immediately afterwards Mayevski spoke of this compound as "les ré-"sultats des expériences russes et anglaises." And Siacci in publishing his Ballistic Tables (1880), copied the above-mentioned Table, saying "ecco i resultati dell' esperienze russe ed inglesi." And again Siacci in his Balistica (1884), gives a second copy of this precious Table of "esperienze russe ed inglesi"." Siacci ought to have known that the English experiments were complete in themselves and were published long before Mayevski concocted his Law of Resistance. But to show clearly the value of the Russian element, I have used Siacci's own Table D(v), said to have been derived from the results "russe ed inglesi" to recalculate one of my Tables of decreasing velocities published in 1868, which Mayevski avowedly made use of and which has already been reprinted in full (104).

Distances	Decreasing Velocities								
Feet	Eashforth's Report, 1868	Mayevski, 1872, by Siacci's Table	Differences						
100	1706 f.s.	1706 f.s.	0 f. s.						
1100	1603	1605	+2						
2100	1509	1509	0						
3100	1419	1420	+ I						
4100	1336	1336	0						
5100	1259	1261	+2						
6100	1189	1194	+ 5						
7100	1129	1134	+ 5						
8100	1076	1082	+ð						
9100	1034	1040	+6						
10100	1002	1005	+ 3						

¹ Proceedings of the R. A. Inst. Notes, 1868.

4 Balistica, III. p. 4.

³ Ib. p. 41, and Note (168).

² Mayevski, Traité de Balistique, 1872, p. 38. ³

This shows clearly that the effect of the Russian experiments was *nil*, and consequently that Mayevski mercly adopted in 1872 my results published in 1868. When experimenters publish the results of their laborious investigations, they know that their results are always open to be tested and examined by any one qualified for such work, but in no case have I met with such a flagrant attempt to appropriate the chief share in the already published work of another.

170. We will now proceed to test Mayevski's experiments with spherical projectiles (1872) in the same manner. In the Report on my experiments with spherical projectiles (1869) a Table of decreasing velocities was given for all the service spherical projectiles (105), just as in the case of the ogival-headed shot above referred to. As Captain Ingalls has used Mayevski's results in preparing Tables for his edition of Siacci's method of calculating trajectories of *spherical* projectiles, I am thus enabled to give a Table of decreasing velocities calculated after Mayevski's results for spherical projectiles (1872) for the 100-Pr. gun at intervals of 1000 feet $(d^2 \div w = 0.7766)$ for comparison with my own Table published in 1869 as follows:

Distances	Decreasing Velocities									
Feet	Bashforth's Report, 1869	Mayevski, 1872, by Ingall's Table	Differences							
400 1400 2400 3400 4400 5400 6000	1970 f. s. 1680 1437 1236 1078 962 906	1970 f. s. 1682 1436 1226 1066 950 893	0 f. s. + 2 - I - I0 - I2 - I2 - I3							

Here again we have very trifling differences, showing that Mayevski's experiments with spherical shot published in 1872, gave just the same results for all practical purposes as my coefficients gave which were published in 1870.

Hence it appears that the only value of Mayevski's experiments is, so far as they go, to confirm my previously published coefficients for both spherical and ogival-headed projectiles. 171. Major Siacci inserted the following note in his Balistica (1884), "La prima tavola balistica fu calcolata sulla base delle "formole (2) della Nota I. dal maggiore Siacci, pubblicando il "Nuovo Metodo (Giornale d' Artiglieria e Genio P. II. 1880). Un' "altra tavola balistica fondata sulle stesse formole, ma con unità "inglesi, fu calcolata dal tenente Mitcham degli S.U. d'America "(Ordnance Note n. 152). Una terza tavola colle stesse formole "è dovuta al Capitano M. Ingalls degli S.U., il quale ha calco-"lato anche una tavola balistica sui proietti sferici (Ballistics, "Fort Monroe Virginia, 1883). La casa Krupp ha pubblicato " anche una estesa tavola balistica sulla base delle formole (3) " della Nota I (Ballistische Formeln von Mayevski, nach Siacci, " Essen, 1883), &c.¹"

172. Here we find no reference to similar Tables published in England in 1871, 2, 3, 7 &c. for both spherical and ogivalheaded projectiles (106)—(110). The simple fact is that Major Siacci uses four Tables in his approximate method of calculating trajectories, three of which had been previously in use in this country, and were well known.

Siacci's Table D (u) 1880 is the same as my Table $\frac{d^2}{w}s$, 1871, ,, ,, T (u) 1880 ,. ,, $\frac{d^2}{w}t$, 1872, , ,, J (u) 1880 ,. ,, Niven's $D_v \frac{\pi}{180}$, 1877.

My two General Tables were adapted by me for use when the path of the projectile approximated to a straight line. And Professor Niven afterwards applied these two tables, with the help of a third table D_v of his own to the calculation of flat trajectories in 1877.³ These simple matters of fact ought to have been mentioned by Major Siacci, as he pretended to give a history of the tables, for his statement of the case as above quoted is misleading.

173. Captain Ingalls has pointed out certain grave difficulties in the use of Siacci's Equations for Direct Fire, as follows: "As

¹ Balistica, 1884, p. 63.

² Proceedings of the Royal Society, 1877.

"already stated, α is some mean value of the secants of the in-"clinations of the extremities of the arc of the trajectory over "which we integrate, and consequently if we take the whole "trajectory lying above the level of the gun, α will be greater "than 1 and less than sec ω . To illustrate, suppose we have for "our data a given projectile fired with a certain known initial "velocity and angle of projection, and we wish to calculate the "angle of fall, terminal velocity, range and time of flight. If "we calculate these elements by means of (75), (72), (76) and "(77) making $\alpha = 1$, they will be too great; while if α is made "equal to $\sec \omega$, or even $\sec \phi$ they will be too small; and the "correct value of each element would be found by giving to a "some value intermediate to the two. Moreover, the value of α . "which would give the exact range would not give the exact time of "flight or terminal velocity"¹! It must be very evident that the approximate calculation of trajectories by Siacci's method as above described, or any similar method involving the use of an arbitrary value of "a," cannot be recognised by me as any test whatever of the correctness of my coefficients.

174. It appears² that in a recent edition of his Tables, Siacci has given up what he was pleased to name "esperienze *russe* ed "inglesi" and has adopted the laws of resistance which Mayevski professes to have deduced from Krupp's experiments, although he has confessed that "Io non conosco i particolari d'esecuzione "delle sperienze Krupp, nè il metodo con cui furono calcolate le "due tabelle³."

175. The late Mr Krupp was famous for his method of employing steel in the construction of big guns, but he appeared in quite a new character as the nominal author of Ballistic Tables in 1881. The second part of the Reports on experiments made by my chronograph, with the help of the first part, 1868, 9, gave coefficients of resistance to ogival-headed projectiles for all velocities between 430 and 2250 f.s., or between 131 and 686 m.s., which were made use of in calculating General Tables 1879. In 1881 Krupp printed in French and German some Ballistic Tables

¹ Exterior Ballistics, p. 115.

² Proceedings of the R. A. Inst. xvii. p. 86.

³ Giornale d' Artiglieria, Pt 2, 1881.

в.

of the same kind as my own which extended from velocity 140 to 700 m.s. But no particulars were given of the experiments, from which he professed to derive materials for his Tables. He merely stated that his Table "a été établi par l'usine Krupp au com-"mencement de l'aunée 1880," but he did not condescend to particulars, neither did he refer to my results printed two years previously. Having stated that it had been found that no satisfactory general law of resistance of the air as function of the velocity could be found, he then remarked "Cette expérience "devait le faire paraître utile de trouver une nouvelle méthode "pour le calcul des vitesses restantes. Cette méthode a été "trouvée de la manière suivante." This is quite erroneous as explained (89). For the same method had been previously discovered in a different manner and published, and had been in regular use in England during the preceding ten years 1871-1881. Early copies of these Tables of Krupp were sent over to the United States, America, where they were at once translated, but I was not able to obtain a sight of the precious work till Dec. 1883, and that copy arrived in this country via America. I then found that Krupp's Tables were based on my Laws of Resistance (Fig. 13), but with the coefficients reduced about 9.3 per cent.¹ Afterwards it appears to have been felt that these Tables lacked support from experiment, for in the following year (1882) an "Annexe", which contained a statement of 37 rounds, apparently selected from old note books 1875 to 1881, was put forward to support the correctness of the so-called "Table de Krupp" (1881). But in no case was the time of flight given, and so there was wanting a most important test of accuracy. The chief particulars of the experiments will be found in the accompanying Table (see next page), which also gives the results obtained by Captain Ingalls who recalculated each round of the "Annexe" (1) by Krupp's Table; (2) by his own table based on my results, reduced 9.3 per cent.; and (3) by formulæ of resistance which Mayevski professes to have deduced from Krupp's Meppen experiments.

176. On these results Captain Ingalls has remarked that "The only discrepancies of any account between the calculated "velocities in this column (his own) and the observed velocities

¹ Proceedings of the R. A. Inst. xIII. p. 350.

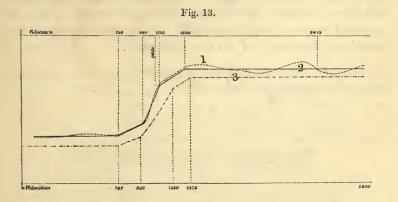
KRUPP'S "ANNEXE."

	Projectile		ctiles		Différen- ces entre distances		SSC5	Calcu	lated Velo	ocities
No.	Dates	Calibre en mm.	Poids en kilo- grammes	Poids de l'air en kilo- grammes par m ³	x ₁ et x ₃ aux- quelles la vitesse fut mesurée en mètres	d Proje v ₁ e	mesurées des Projectiles v_1 et v_8 en mètres		v Computed by Table I. m. s. c=0'907	v Computed by Mayevski's Formulas m. s.
1 2 3	16/11/75 18/ "3/76	240 " 172 [.] 6	125 161 61 5	1°245 	1450 1389	467 454*5 477	380 390 388	379*9 388*3 388*7	380.7 387.7 389.3	380.6 387.5 388.7
4 5 6	24/ 3/76 2/ 3/76 3/ 3/76	" 149°1 "	" 39°3 33°5	" 1°260 1°240	1429 "	514 .7 518 507.7	416 ^{.6} 401 ^{.6} 380	417.9 402.1 380.7	41 7 .6 403.0 379.9	415°7 401°2 379°1
7 8 9	30/11/76 2/ 7/78 11/ 6/79	,, 355 ,,	31°3 525 "	1 °265 1 °200 1 °200	924 1884 2384	475°8 495'9 490	387.8 432.7 415	388.2 433.1 411.8	387.7 433.8 414.4	387.3 432.6 412.3
10 11 12	20/ 6/79 17/12/78 7/ 8/79	" 149·1 "	" 31·3 51	1 '200 1 '265 1 '206	2389 1950 1929	488.5 609 505.2	409 ^{.6} 394 394 ^{.6}	410'4 393'9 393'3	412°3 395°4 393°4	410'9 392'7 392'3
13 14 15	9/ 8/78 13/12/78	152°4 ," 149°1	51.5 32.5 31.3	1 °205 1 °230	1450 "	472°4 577 632°4	391°3 422 460°9	389'3 422'0 460'3	389°1 424°2 462°8	388.6 421.5 459.8
16 17 18	25/ 6/79 5/ 8/79 6/ 8/79	240 400 "	215 777 643	1.180 1.180 1.180	1904 2384 ''	480 [.] 4 499 [.] 4 533 [.] 4	412.8 433.7 443.8	412'0 432'1 447'0	412.4 433.0 448.2	411'1 431'7 446'6
19 20 21	6/10/76 3/10/76	,, 84 120	6.55 16.4	1°190 1°197 1°211	", 2447 "	531.5 446.9 463.3	444'5 266 284'I	445°4 267°2 289°2	446 ^{.6} 259 ^{.7} 281 ^{.6}	445°0 267°4 289°3
22 23 24	12/12/78 22/ 1/80 17/ 1/80	149'1 105 96	31.3 16 12	1.285 1.300 1.340	3448 3436 3439	536°6 481°5 425°8	294.8 282 256.2	290.6 278.4 250.5	283.7 271.2 244.1	290°5 279°6 254°4
25 26 27	26/ 6/80 10/ 7/80 7/ 7/81	107 152'4 105	12.5 31.5 16	1.218 1.206 1.222	777°5 966°5 950	205'I 203 514'2	188.2 188 426.9	189.8 187.4 421.1	187'7 185'9 422'2	189'8 188'0 420'4
28 29 30	11/ 7/81 23/ 6/77 25/ 7/81	149'I 283 ''	39 234.7 "	1 °218 1 °206 1 °205	1429 4450 1879	470 464 7 465 3	369 ^{.5} 321 ^{.2} 403 ^{.9}	370'4 318'9 403'3	369'1 311'3 404'6	369°3 317°6 403°7
31 32 33	26/ 7/81 27/ ["] 7/81	23 33 33	79 79 79 79	1.200 1.220	1919 2425'5 2921'5	465 °9 466 °5 464 °8	385°4 370°6 347°8	384.7 368.0 350.9	384 °0 366 °6 347 °7	383.8 367.0 349.7
34 35 36 37	28/ 7/81 29/ 7/81 1/ 8/81 4/ 8/81	33 33 33 32 32	>3 >3 33 33 33	1 '227 1 '220 1 '192 1 '206	3426°0 4446°5 5945°0 "	463 .7 460.0 455.8 453.1	336°0 316°6 295°0 294°7	337.6 316.6 293.9 291.5	331'4 308'6 285'6 283'2	336°6 315°0 293°0 291 4

l

10 - 2

147


"occur where the curvature of the trajectory is considerable, as "in the last four rounds, and one or two others. Equation (30) is "based upon the supposition that the *path of the projectile is a* "horizontal right line, and of course, gives only approximate results "when this path has any appreciable curvature.... In No. 37, "for example, it will be found that to attain a range of 5945 metres " $(3\frac{2}{3}$ miles) the angle of projection would have to be 12° 37′, and "the angle of fall would be 17° 40′ ¹." Hence it appears that the result of Krupp's labours was a reduction of 9.3 per cent. in my coefficients, and the authority for that reduction depends entirely upon the 37 rounds given in Krupp's "Annexe."

177. When it is desired to find the law of the resistance of the air to the motion of projectiles by the use of chronoscopes of the Navez type, it is necessary to measure the velocities of the projectiles at two points near together, and then the resistance required to produce the observed loss of velocity in the given short range is usually taken to be the resistance of the air to the projectile when moving with the mean of the two measured velocities. But not one of the ranges given in Krupp's Annexe is of moderate length, for they vary from 777 to 5945 metres. Nothing can therefore be known experimentally about the variation of the velocity between the two extremities of each range. Velocities measured at distant stations by chronoscopes have not been found satisfactory. Take the round mentioned in particular by Captain Ingalls (176); the rise in the trajectory near the gun would be 22 in the 100, and the fall at the distant end would be 32 in the 100. Here is a difficult problem to fire a projectile through a pair of screens near the gun and also through another pair 5945 metres off. And if this could be done, the resulting velocities would not be trustworthy under the circumstances above stated.

178. Notwithstanding all these difficulties Mayevski and Hojel have had the courage to attempt to deduce laws of resistance from the Meppen experiments. It appears to me that the only way to proceed in such a case, would be to take some previously determined law and adjust the coefficients so as to obtain the desired results. I have copied the following diagram², as it

¹ Proceedings of the R. A. Inst. xIII. p. 62. ² Ib. xVII. p. 87.

shows clearly the state of the case. The dotted line (1) represents the results given by my experiments (1880); (2) the laws deduced from my experiments by Captain Ingalls¹ (164); and (3) the laws deduced by Mayevski (161), "when the Krupp projectile is "employed^{*}". As Ingalls has used both the Krupp Table and

Mayevski's laws to calculate the rounds of the Annexe, and found a close agreement between them, (3) may be taken also to represent the laws of resistance on which Krupp's Tables are founded.

179. Immediately after my Report on the experiments of 1878, 9 was printed, it was decided to make experiments with still higher velocities. These experiments, carried out at Shoeburyness, March 8—10, 1880, extended the coefficients of resistance to ogival-headed projectiles to all velocities between 2250 and 2780 f.s., or between 686 and 850 m.s. The Report of these experiments was published 1880³.

180. The following July experiments were professedly carried on at Meppen: "pour déterminer la résistance de l'air aux grandes "vitesses de projectile" Bulletin XXX. But in the end, all that was attempted was to try "si la résistance de l'air restait pro-"portionelle au carré de vitesse du projectile aussi pour les vi-"tesses de projectile plus grandes que celles expérimentées jus-"qu'ici." Here the details of each round have been given, so that we are able to judge how experiments of this nature were con-

¹ Exterior Ballistics, p. 36. ² Ib. p. 28. ³ Final Report.

ducted at Meppen. No less than six independent chronographs were used which were arranged so that one pair measured the velocity at station A, 30 metres, another pair at B, 130 metres, and the remaining pair at C, 500 to 1500 metres from the gun. Generally the two measures of the velocity at the same point differed considerably and much more than is allowed by the rule laid down by Ingalls, for he says that the difference in the velocities of each shot as determined by two instruments should not exceed one-thousandth of the actual velocity¹.

181. As a curiosity, I copy from Bulletin XXX. the worst group of all, which exceeds belief.

		30 met	ed veloci res from (Chronoso	Gun by	1 30 met	ed veloci res from Chronosc	Gun by	Measured velo- city at C 1000 metres from Gun by Chronoscopes		
	Round	No. 301	No. 302	Diff.	No. 292	No. 293	Diff.	No. 114	No. 115	
	7 8 9 10	896°4 903°8 907°4 907°4	892.5 894.5 887.2 911.4	+ 3.9 + 9.3 + 20.2 - 4.0	855 ^{.9} 852 ^{.7} 857 ^{.6} 854 ^{.1}	856.7		nil. nil. 438 · I nil.	nil. nil. nil. nil.	
	Means	903.8	896.4	+ 7.4	855.1	851.3	+ 3.8	438.1	nil.	
ıs	of mea	ns 900'l	m. s.		853	2 m. s.	438'I m.s.			

July 5, 1881.

182. Here the two measured velocities of round 9 at station A differ by so much as 20.2 m.s., or 66 f.s.; those of round 10, at station B differ 19.4 m.s., or 64 f.s.; and other rounds differ 10.0, 9.3, 5.0 4.0 and 3.9 m.s. But that is not the worst, for there was only one solitary unchecked velocity measured at station C, and that was treated as a perfectly satisfactory mean velocity at C for all the four rounds. The mean velocities so obtained at A and C, and at B and C, were combined to calculate a certain coefficient, which was found respectively to be 3.585 and 3.700, and these differed little from the mean value 3.66 finally adopted. But if Krupp had combined the mean velocities at A and B, he would have obtained 2.584, something very different from 3.66 the value of the constant adopted.

¹ Ballistic Machines, p. 13.

150

Mean

USE OF GENERAL TABLES IN TESTING COEFFICIENTS. 151

183. Round 27 of Krupp's "Annexe" formed a part of the above-mentioned experiment. It is in reality the mean of *five* rounds. In this case the velocities measured at each station agreed better together. Combining the mean velocities at stations A and C, and B and C, the values of the constant were found to be respectively 3.641 and 3.743. But if those at A and B had been combined in the same way the result would have been found 2.765! It is manifest that such experiments are quite unworthy of attention.

184. Thus it appears that the Report of some experiments made by my chronograph and General Tables for velocities 131— 686 m.s. were published in 1879. Krupp professes to have carried out the experiments in the following year, 1880, which formed the basis of his Tables for velocities 140—700 f.s. printed in 1881. These Tables were similar to my own.

Again the Report on experiments with my chronograph, for velocities higher than 686 m.s., was published in 1880, and in the following summer, 1881, Krupp carried out experiments of the same kind (Bulletin xxx.).

185. I believe I am correct in stating that the United States did not adopt the Krupp system of guns, and they certainly have not adopted his Tables, for Captain Ingalls in his Exterior Ballistics, 1886, intended chiefly as text book for officers in U. S. Artillery School, has stated that his table was based "upon the experiments of Bashforth," p. 129.

186. The correct method of calculating the trajectories of projectiles originally given by Bernoulli is that which I have endeavoured to render practically useful for the purpose for which it was intended. If trajectories are correctly calculated by this method, we are quite certain that any error in the result arrived at is entirely due to the defects of the data made use of, and not at all to any defect in the mode of calculation.

187. In order to test the value of the coefficients of resistance in a satisfactory manner, great care must be exercised in selecting really trustworthy experiments. Random shots are of no value. Good Range Tables, where the muzzle velocity can be relied on, seem to be the best, because the ranges and times of flight for different elevations must respectively be consistent. But the elevations given are liable to be affected by both the "jump" and the "vertical drift" which probably vary with the elevation. It seems to me also probable that the muzzle velocity may vary slightly with the elevation of the gun. A moderate wind might produce an effect upon the range, and still not affect sensibly the time of flight. In common fairness these causes of error must be allowed for.

188. As a test of the accuracy of coefficients of resistance for high velocities, I prefer to apply the General Tables to calculate the times of flight for ranges given by the Range Table for elevations below 4° or 5°, because such tests are not sensibly affected by the "jump" or the "vertical drift". Take the Range Table of the 4-inch B.L. gun. Weight of projectile 25 lbs.; muzzlevelocity 1900 f.s.; jump, 6 minutes.

Experimental Ranges.	1000 yards.	2000 yards.	3000 yards.
Elevation $+ 6'$	0° 55′	$2^{\circ}17'$	4° 10'
Horizontal m. velocity	1899 [.] 76 f.s.	1898 [.] 49 f.s.	1894 [.] 98 f.s.
Calc. horizon. striking velocity	1443 04 f.s.	1109 [.] 03 f.s.	944·1 f.s.
Exp. time of flight	1‴.80	4 ^{''} ·21	7''.20
Calc. time of flight	1".814	4 ^{''} •205	7".171
Difference in time, or	+ 0".014	-0".005	- 0".029
Difference in range	-7 yds.	$+\overline{2 \text{ yds.}}$	+ 9 yds.

The negative sign in the time of flight here indicates that the coefficients of resistance are too little. As the errors in time are so very minute, it is plain that my coefficients of resistance give admirable results for velocities from 1900 f.s. to 1443 f.s. to 1109 f.s. to 944 f.s., or, for all velocities between 1900 and 944 f.s. No matter at what elevation the gun be fired, so long as the *density of the air remains unaltered*, the same coefficients of resistance must still hold good for all velocities between 1900 and 944 f.s. For the case where the density of the air decreases with the height, proper corrections must be introduced by Tables xx. and XXI. Although the form of the 4-inch projectile is probably more acutely pointed than those used in my experiments, it appears that, if anything, my coefficients are a trifle *too little*.

152

Krupp's correction would be utterly wrong in this case. This is the gun chosen by the authorities to be used in testing my coefficients in consequence of the Krupp scare. It is also a modern gun.

189. Referring again to the Notes by Captain H. J. May, R.N., on the Method of compiling a Range Table, 1886¹, there will be found a specimen Range Table, which we have already made use of (124), for ranges up to 4000 yards of the 12-inch B.L. gun; muzzle velocity 1892 f.s.; weight of projectile 714 lbs.; jump 6 minutes. Using the horizontal muzzle velocity in the specified cases, the General Tables have been employed to calculate the time of flight as before.

Experimental Ranges.	1000 yards	2000 yards	3000 yards	4000 yards
Elevation $+6'$	0° 50′	1° 44'	2° 46'	$3^{\circ} 56'$
Horizontal muzzle velocity	1891 [.] 81.s.		1889 [.] 79f.s.	
Calc. hor. striking velocity	1739 [.] 15f.s.	1593 [.] 44f.s.	1457 [.] 74f.s.	1332·10 f.s.
Exp. time of flight	1''.66	3".47	5"•44	7".61
Calc. time of flight	1".654	3".457	$5'' \cdot 428$	7".591
Difference in time, or	- 0006	-0 ^{".} 013	$-0^{''} \cdot 012$	-0"·019
Difference in range	+ 4 yds.	+7 yds.	+ 6 yds.	+ 8 yds.

190. Here it is manifest that my coefficients give most admirable results for velocity 1892 f.s. to 1739 f.s. to 1593 f.s. to 1458 f.s. and to 1332 f.s. or for all velocities between 1892 and 1332 f.s. And that will hold true for any elevation whatever, so long as the density of the air remains unaltered. The 12-inch B.L. gun is, I believe, a modern gun. The only way to test my coefficients of resistance for *low* velocities is by calculating trajectories. This has been done with great success for one gun (122). In the above two examples the error in range has been found by calculating how far the shot moving with its corresponding velocity would travel in the error of time.

191. The conclusion I arrive at is, that my coefficients of resistance are perfectly satisfactory, and might be used with great advantage in testing all the new heavy guns. I would measure

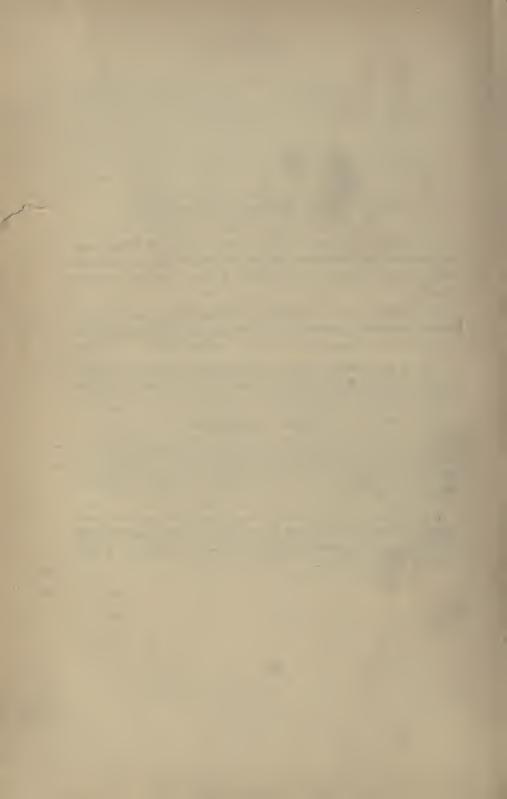
¹ Proceedings of the R. A. Inst. xiv. p. 356.

the muzzle velocity and time of flight for say an elevation of about 4° by my chronograph. I would also take two or more measures of the muzzle velocity by the best chronoscopes in the service to secure a reliable muzzle velocity. I would then calculate by the General Tables, as above, the time of flight over the given range. If the time of flight of the experimental projectile was then divided by the calculated time of flight over the same range, the result, as it was < or > 1, would show whether, and to what extent, the experimental projectile was superior or inferior in steadiness to the theoretical projectile. In this way the General Tables might be used as a standard of reference in the trial of new guns, and in process of time it would be found how far calculation might take the place of experiment. This is a matter of great practical importance, if, as I see it stated, a 110-ton gun can only fire 95 rounds, a 67-ton gun only 127 rounds, and a 45-ton gun only 150 rounds before they become respectively unserviceable.

192. I have given in Tables I.—IV. the coefficients of resistance to both spherical and ogival-headed projectiles finally adopted after a most careful re-examination of 502 rounds. In arriving at my conclusion I have had no theory to support and no interest to promote. I have been simply searching for the truth, and I have not been able to discover any satisfactory reason for changing my coefficients. But if any one should still be desirous of making a reduction of x per cent. in using the General Tables, or in calculating an arc of a trajectory, he has only to substitute $\frac{d^2}{w} \cdot \frac{100-x}{100}$ for $\frac{d^2}{w}$. If x = 100 he will come to the case of no resistance, and if x > 100 he will have an accelerating force, and all the tables may still be used as directed.

Titles in full of some Reports, &c., referred to.

(1) Reports on Experiments made with the Bashforth Chronograph, to determine the Resistance of the Air to the Motion of Projectiles, 1865—1870. 84/B/1941. W. Clowes & Son; Harrison & Sons; &c., &c.


(2) Tables of Remaining Velocity, Time of Flight and Energy of various Projectiles, calculated from the Results of Experiments made with the Bashforth Chronograph, 1865–1870. London, 1871.

(3) A Mathematical Treatise on the Motion of Projectiles, founded chiefly on the Results of Experiments made with the Bashforth Chronograph. London, 1873.

(4) Supplement to the above. London, 1881.

(5) Report on Experiments made with the Bashforth Chronograph to determine the Resistance of the Air to the Motion of Elongated Projectiles. (Part II.) 1878-79. 84/B/2853. Printed for Her Majesty's Stationery Office, 1879.

(6) Official Copy. 84/B/2909. Final Report on Experiments made with the Bashforth Chronograph to determine the Resistance of the Air to the Motion of Elongated Projectiles, 1878-80. W. Clowes & Son; Harrison & Sons; &c., &c.

I.

Coefficients for the Newtonian Law of the Resistance of the Air to Spherical Projectiles. $(\omega = 534.22 \text{ grains.})_{Society} = 74$

-					554	8	See	- 11-
	7	k _v			kv			k _v
v	kv		Z'	ku		v	k_v	
f.s.		g	f.s.		g	f.s.		8
840	118.3	3.675	1330	194.9	6.022	1820	205.8	6.393
850	119.7	3.718	1340	195.6	6.076	1830	205.8	6.393
860	121.1	3.762	1350	196.2	6.095	1840	205.9	6.396
870	122.2	3.805	1360	196.8	6.114	1850	206.1	6.402
880	123.9	3.849	1370	197.4	6.132	1860	206.1	6.402
890 900	125°3 126°7	3.892 3.936	1380 1390	197.9 198.4	6·148 6·163	1870 1880	206°2 206°4	6·406 6·412
910	128.1	3.979	1400	198.9	6.123	1850	206.6	6.418
920	129.5	4.023	1410	199.4	6.194	1900	206.9	6.427
930	130.9	4.066	1420	199.9	6.210	1910	207.2	6.437
940	132.4	4.113	1430	200'4	6.225	1920	207.6	6.449
950	133.8	4.126	1440	200'9	6.241	1930	207 [.] 9 208 [.] 2	6.458
960	135.2 136.8	4°200 4°250	1450 1460	201°3 201°6	6·253 6·263	1940 1950	208.2	6·468 6·474
970 980	138.4	4.299	1400	202.0	6.275	1950	208.7	6.483
990	140.1	4.352	1480	202.3	6.284	1970	209.0	6.493
1000	142.0	4.411	1490	202.7	6.297	1980	209.3	6.202
1010	144.2	4.480	1500	203.0	6.306	1990	209 ·5 209·8	6.208
1020	146.9	4.263	1510	203.3	6.315	2000		6.517
1030	150.0	4°660 4°762	1520	203·5 203·8	6·322 6·331	2010 2020	210'0 210'3	6·524 6·533
1040 1050	153·3 156·5	4.862	1530 1540	2033 204·I	6.340	2020	210 3	6.232
1060	159.5	4.955	1550	204.3	6.347	2040	210.5	6.539
1070	162.3	5.042	1560	204.5	6.323	2050	210.2	6.539
1080	164.9	5.123	1570	204.7	6.329	2060	210.5	6.539
1090	167.3	5.197	1580	204.9	6.365	2070	210.4	6.536
1100 1110	169.6	5.269	1590 1600	205·1 205·3	6·371 6·378	2080 2090	210'3 210'I	6·533 6·527
III0 II20	173.7	5·334 5·396	1610	205 3	6.381	2100	209.8	6.517
1130	175.6	5.455	1620	205.6	6.387	2110	209.6	5.211
1140	177.5	5.214	1630	205.7	6.390	2120	209.3	6.202
1150	179.3	5.220	1640	205.8	6.393	2130	209.1	6.496
1160	181.0	5.623	1650	205.9	6.396	2140	208.8 208.6	6·486 6·480
1170 1180	182.6 184.1	5.672	1660 1670	206°0 206°I	6·399 6·402	2150 2160	208.0	6.474
1190	185.4	5.759	1680	206'1	6.402	2170	208.2	6.468
1200	186.6	5.797	1690	206.2	6.406	2180	208.0	6.461
1210	187.7	5.831	1700	206.2	6.406	2190	207.9	6.458
1220	188.6	5.859	1710	206.2	6.406	2200	207.7	6.452
1230	189.4	5.884	1720	206.2	6.406	2210 2220	207.5	6·446 6·440
1240 1250	190°2	5.909 5.930	1730 1740	200.2	6·406	2220	207.3	6.437
1250	191.5	5.949	1750	206.1	6.402	2240	207.0	6.430
1270	192.1	5.968	1760	206.1	6.402	2250	206.8	6.424
1280	192.6	5.983	1770	206.0	6.399	2260	206.6	6.418
1290	193.0	5.996 6.005	1780	205.9	6.396	2270	206.4	6.412
1300	193.3	6.002	1790 1800	205.9	6.396	2280	206.1	6.402
1310 1320	193.7 194.3	6.036	1810	205·9 205·9	6·396 6·396			
1,320	1943	0030	1010		0 390			

Approximate Law of the Resistance of the Air to the motion of Spherical Projectiles. ($\omega = 534.22$ grains.)

$$\begin{array}{ll} v &> 1300\,f.\,s.,\,f \propto v^2,\ k = 205^{\cdot3},\,\, \frac{k}{g} = 6^{\cdot}3776,\ \log \frac{k}{g} = 0^{\cdot}80466,\\ v < 1300 > 1100\,f.\,s.,\,f \propto v^3,\,\, K = 153^{\cdot8},\,\, \frac{K}{g} = 4^{\cdot}7778,\ \log \frac{K}{g} = 0^{\cdot}67923,\\ v < 1100 > 1000\,f.\,s.,\,f \propto v^4,\ h = 141^{\cdot6},\,\, \frac{h}{g} = 4^{\cdot}3988,\ \log \frac{h}{g} = 0^{\cdot}64333,\\ v < 1000 > 840,\ ,\,f \propto v^3,\,\, K = 140^{\cdot7},\,\, \frac{K}{g} = 4^{\cdot3}708,\ \log \frac{K}{g} = 0^{\cdot}64056,\\ r < 840,\ ,\,f \propto v^2,\ k = 118^{\cdot3},\,\, \frac{k}{g} = 3^{\cdot}6749,\ \log \frac{k}{g} = 0^{\cdot}56525. \end{array}$$

III.

Coefficients for the Newtonian Law of the Resistance of the Air to Ogival-headed Projectiles. ($\omega = 534.22$ grains.)

0			-					
V f.s.	k _v	$\frac{k_v}{g}$	V f.s.	k _v	Ro E	٦ f.s.	k _v	$\frac{k_v}{g}$
100 to 810 810 820 830 840 850 840 850 800 900 910 920 930 940 950 <	60.5 "60.5 60.6 61.1 61.8 62.6 63.3 64.0 64.8 65.5 67.0 64.8 65.5 67.0 67.7 68.4 69.2 69.9 70.7 71.4 69.2 69.9 70.7 71.4 72.1 72.9 73.6 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5	1.879 1.879 1.883 1.898 1.920 1.945 1.968 2.013 2.035 2.035 2.035 2.035 2.035 2.035 2.035 2.057 2.081 2.150 2.150 2.171 2.196 2.218 2.2265 2.2286 2.314 2.364 2.364 2.364 2.364 2.364 2.364 2.364 2.364 2.364 2.364 2.364 2.3651 3.3651 3.36551 3.36551	1110 1120 1130 1140 1150 1160 1150 1200 1210 1220 1220 1230 1240 1220 1230 1240 1220 1240 1220 1280 1270 1280 1270 1280 1270 1280 1270 1280 1270 1280 1270 1280 1270 1280 1270 1280 1290 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 1400 1400 1220 1280 1280 1290 1280 1290 1280 1290 1280 1290 1280 1290 1280 1290 1280 1290 1280 1290 1280 1290 1280 1290 1280 1290 1280 1290 1280 1290 1300 1310 1300 1400	120'3 122'3 122'3 125'0 126'0 127'1 128'2 130'4 131'5 132'6 133'7 134'8 135'9 137'0 133'7 134'8 135'9 137'0 133'7 134'8 135'9 137'0 133'7 139'2 140'3 144'3 144'9 145'8 144'9 145'8 146'6 147'1 147'3 147'7	3.737 3.799 3.849 3.948 3.948 3.948 3.948 3.948 4.017 4.051 4.051 4.051 4.051 4.051 4.051 4.055 4.113 4.055 4.1133 4.188 4.222 4.256 4.324 4.358 4.329 4.324 4.358 4.393 4.4417 4.439 4.4451 4.551 4.5517 4.552 4.5554 4.5554 4.556 4.558	1430 1440 1450 1460 1470 1480 1500 1500 1500 1520 1550 1550 1550 155	147.9 148.0 148.0 148.0 147.6 147.6 147.6 147.6 147.3 147.1 146.8 146.8 146.5 146.2 145.9 145.6 145.2 145.9 145.6 145.2 144.9 143.6 145.2 144.9 143.6 142.3 143.0 142.6 142.3 142.0 142.6 141.6 141.3 141.6	4.594 4.598 4.598 4.598 4.598 4.598 4.598 4.598 4.598 4.598 4.598 4.598 4.598 4.598 4.585 4.576 4.576 4.564 4.551 4.542 4.522 4.542 4.521 4.542 4.542 4.542 4.542 4.4486 4.440 4.4470 4.442 4.442 4.442 4.442 4.442 4.430 4.389 4.389 4.389
1	1		1		~			

NEWTONIAN LAW OF RESISTANCE.

III. (continued).

	7	ko		,	k _v		,	k _v
7'	Ku		v	k_v		v	k_v	
f.s.		g	f.s.		g	f.s.		g
J.J.			J. s.			J.J.		
1750	140.2	4.365	2100	140.2	4'371	2450	134.1	4.166
1760	140.3	4.328	2110	141.5	4.386	2460	133.6	4.120
1770	140.1	4.352	2120	141.6	4.399	2470	133.5	4.138
1780	139.9	4.346	2130	142.0	4.411	2480	132.9	4.129
1790	139.6	4.337	2140	142.2	4.427	2490	1 32.2	4.119
1800	139.3	4.327	2150	143.0	4'442	2500	132.2	4.102
1810	139.0 138.8	4.318	2160	143.5	4.458	2510	132.3	4.110
1820	130.0	4.312	2170	143.9	4.470	2520	132.2	4.116
1830	138.6	4.306	2180	144.2	4.480	2530	132.4	4.113
1840	138.4	4.299	2190	144.5	4.489	2540	132.2	4.110
1850 1860	138.3 138.3	4.296	2200	144.8	4.498	2550	132.6	4.119
	138.0	4.293	2210	145.0	4.204	2560	132.8	4.125
1870 1880		4 ^{.287} 4 ^{.281}	2220	145.1	4.207	2570	133.1	4.132
1890	137.8		2230	145.2	4.211	2580	133.4	4.144
1900	137.5	4°271 4°262	2240	145.3	4.214	2590 2600	133.7	4.123 4.160
	13/2		2250 2260	145°3 145°1	4.214	2000	133.9	4.100
1910 1920	136.7	4.253	2200	145 1	4.207 4.492	2620	1 34·2 1 34·6	4.181
1920	136.6	4°247 4°243	2280	144 U 144 I	4 492 4.476	2630	1340	4.200
1930	136.6	4.243	2200	143.6	4.401	2640	135.2	4.215
1940	136.2	4.240	2300	143.1	4.441	2650	136.3	4.234
1960	136.4	4.237	2310	1431	4 4 4 5 4 4 4 2 7	2660	136.8	4.220
1970	136.2	4.240	2320	142.0	4 427 4 411	2670	137.3	4.265
1980	136.6	4.243	2330	141.4	4.393	2680	137.7	4.278
1990	136.8	4.250	2340	140.9	4.377	2600	138.1	4.290
2000	137.0	4.256	2350	140'2	4.355	2700	138.5	4.302
2010	137.2	4.262	2360	139.5	4.334	2710	139.0	4.318
2020	137.5	4.571	2370	138.9	4.315	2720	139.4	4.330
2030	137.8	4.581	2380	138.2	4.293	2730	139.8	4.343
2040	138.1	4.290	2390	137.5	4.271	2740	140.3	4.358
2050	138.4	4.299	2400	136.8	4.250	2750	140.8	4'374
2060	138.8	4.312	2410	136.2	4.231	2760	141.4	4'393
2070	1 39.2	4.327	2420	135.6	4'212	2770	141.9	4.408
2080	139.6	4.337	2430	135.0	4.194	2780	142.4	4.424
2090	140.1	4.352	2440	134.2	4.178			

IV.

Approximate Law of the Resistance of the Air to the motion of Ogival-headed Projectiles. ($\omega = 534.22$ grains.)

$$\begin{aligned} v &> 1300 f.s., \ f \propto v^2, \ \ k = 141^2, \ \ \frac{k}{g} = 4^{\cdot}3864, \ \ \log \frac{k}{g} = 0^{\cdot}64211, \\ v < 1300 > 1100 f.s., \ f \propto v^8, \ \ K = 109^{\cdot}1, \ \ \frac{K}{g} = 3^{\cdot}3891, \ \ \log \frac{K}{g} = 0^{\cdot}53009, \\ v < 1100 > 1000 f.s., \ f \propto v^6, \ \ L = 77^{\cdot}0, \ \ \frac{L}{g} = 2^{\cdot}3920, \ \ \log \frac{L}{g} = 0^{\cdot}37876, \\ v < 1000 > 820 f.s., \ \ f \propto v^3, \ \ K = 73^{\cdot}6, \ \ \frac{K}{g} = 2^{\cdot}2864, \ \ \log \frac{K}{g} = 0^{\cdot}35915, \\ v < 820 f.s., \ \ \ f \propto v^2, \ \ k = 60^{\cdot}5, \ \ \frac{k}{g} = 1^{\cdot}8794, \ \ \log \frac{k}{g} = 0^{\cdot}27402 \end{aligned}$$

Coefficients for the Newtonian Law of Resistance of the Air to Hemispherical-headed Projectiles. ($\omega = 534.22$ grains.)

V f.s.	k _v	$\frac{k_v}{g}$	κ1	V f.s.	k _v	$\frac{k_v}{g}$	κ,	V f.s.	k _v	$\frac{k_v}{s}$	κ,
1100 1110 1120 1130 1140 1150 1160 1640 1650 1660	146.3 147.6 149.0 150.3 151.6 153.0 153.0 154.3 189.6 190.4 191.2	4°54 4°59 4°63 4°67 4°71 4°75 4°79 5°89 5°92 5°94	1°24 1°23 1°22 1°21 1°21 1°21 1°21 1°22 1°33 1°33	1670 1680 1690 1700 1710 1720 1730 1740 1750 1760 1770	192'0 192'7 193'3 193'8 194'3 194'3 194'7 195'0 195'1 195'0 194'8 194'5	5 '97 5 '99 6 '01 6 '02 6 '03 6 '05 6 '06 6 '06 6 '06 6 '06 6 '06 6 '04	1'34 1'35 1'36 1'37 1'37 1'38 1'38 1'39 1'39 1'39 1'39	1780 1790 1800 1810 1820 1830 1840 1850 1850 1860 1870	194°0 193°3 192°6 191°9 190°9 190°0 189°0 188°0 188°0 188°3	6:03 6:01 5:98 5:96 5:93 5:90 5:87 5:84 5:81 5:79	1'39 1'38 1'38 1'38 1'38 1'37 1'37 1'37 1'36 1'35 1'35

VI.

Coefficients for the Newtonian Law of Resistance of the Air to Flat-headed Projectiles. ($\omega = 534.22$ grains.)

V f.s.	k.	$\frac{k_v}{g}$	κ,	V f.s.	k _v	$\frac{k_v}{g}$	κ,	V f.s.	k _v	k.	κ2
1530 1540 1550 1560 1570 1580 1590 1600 1610 1620 1630 1640	266.7 268.6 270.3 272.2 274.0 275.6 277.1 278.7 280.3 281.9 283.5 284.9	8.28 8.34 8.40 8.46 8.51 8.56 8.61 8.66 8.71 8.76 8.81 8.85	1.81 1.83 1.85 1.86 1.88 1.91 1.92 1.94 1.95 1.97 1.98	1650 1660 1670 1680 1700 1710 1720 1730 1740 1750	286.4 288.0 289.4 291.0 292.4 293.9 295.3 296.9 298.3 299.5 300.6	8.90 8.95 8.99 9.04 9.08 9.13 9.17 9.22 9.27 9.30 9.34	2.00 2.01 2.02 2.04 2.05 2.07 2.09 2.10 2.12 2.13 2.14	1760 1770 1780 1800 1810 1820 1830 1840 1850 1860	301 '8 303'0 304'2 305'2 306'8 307'4 308'0 308'4 308'6 308'6 308'6	9.38 9.41 9.44 9.51 9.53 9.55 9.57 9.58 9.59 9.59	2°15 2°16 2°17 2°19 2°20 2°21 2°22 2°22 2°23 2°23 2°23

VII.

$$Q_{\phi} = \sec \phi \tan \phi + \log_e \tan \left(\frac{\pi}{4} + \frac{\phi}{2}\right).$$

φ	.о	.1	•2	.3	•4	•5	•6	•7	•8	.9	Δ
0° I 2	0.0 0000 0.0 3491 0.0 6986	0349 3840 7335	0698 4190 7685	1047 4539 8035	1 396 4888 8385	1745 5238 8735	2095 5587 9085	2444 5937 9435	2793 6286 9786	3142 6636 *0136	+ 349 350 350
3	0°1 0486	0837	1188	1538	1889	2240	2591	2942	3294	3645	351
4	0°1 3997	4348	4700	5052	5404	5757	6109	6462	6814	7167	352
5	0°1 7520	7 ⁸ 73	8227	8580	8934	9288	9642	9996	*0350	*0705	354
6	0°2 1059	1414	1770	2125	2481	2836	3192	3549	3905	4262	356
7	0°2 4618	4976	5332	5691	6048	6406	6765	7123	7482	7841	358
8	0°2 8200	8560	8920	9280	9640	*0001	*0362	*0723	*1085	*1447	361
9	0'3 1809	2171	2534	2897	3260	3624	3988	4352	4717	5082	364
10	0'3 5447	5813	6179	6545	6912	7279	7646	8014	8382	8751	367
11	0'3 9120	9489	9858	*0228	*0599	*0969	*1341	*1712	*2084	*2457	371
12	0.4 2829	3202	3576	3950	4325	4700	5075	5451	5827	6203	375
13	0.4 6581	6958	7336	7715	8094	8473	8853	9233	9614	9996	379
14	0.5 0378	0760	1143	1526	1910	2294	2679	3065	3451	3 ⁸ 37	384
15	0 ^{.5} 4224	4612	5000	5389	5778	6168	6558	6949	7341	7733	390
16	0 ^{.5} 8126	8519	8913	9307	9702	*0098	*0494	*0891	*1289	*1687	396
17	0 ^{.6} 2086	2485	2885	3286	3 ⁶⁸ 7	4090	4492	4896	5300	5704	402
18	0.6 61 10	6516	6923	7330	7739	8148	8557	8968	9379	9791	409
19	0.7 0203	0616	1030	1445	1861	2277	2694	3112	3531	3950	416
20	0.7 437 1	4792	5214	5636	6060	6484	6909	7335	7762	8190	424
21	0.7 8619	9048	9478	9910	*0342	*0774	*1208	*1643	*2079	*2515	433
22	0.8 2953	3391	3830	4270	4712	5154	5597	6041	6486	6932	442
23	0.8 7380	7828	8277	8727	9178	9630	*0083	*0537	*0992	*1449	452
24	0.9 1906	2364	2824	3284	3746	4209	4672	5137	5603	6071	463
25	0.9 6539	7008	7479	7951	8424	8898	9373	9850	*0327	*0806	474
26	1.0 1286	1768	2250	2734	3219	3706	4193	4682	5173	5664	486
27	1.0 6157	6651	7147	7643	8141	8641	9142	9644	*0148	*0653	500
28	1.1 1159	1667	2176	2687	3199	3712	4227	4744	5262	5781	514
29	1.1 6302	6825	7349	78 7 4	8402	8930	9460	9992	*0526	*1061	529
30	1°2 1597	2136	2675	3217	3760	4305	4851	5400	5950	6501	545
31	1°2 7055	7610	8167	8725	9286	9848	*0412	*0978	*1546	*2115	562
32	1°3 2687	3260	3835	4412	4991	5572	6155	6739	7326	7915	581
33	1°3 8506	9098	9693	*0290	*0889	*1490	*2093	*2698	*3305	* 3915	601
34	1°4 4526	5140	5756	6374	6994	7617	8241	8868	9498	*0129	623
35	1°5 0763	1399	2038	2679	3322	3968	4616	5267	5920	6575	646
36	1.5 7233	7894	8557	9222	9890	*0561	*1234	*1910	*2589	*3270	671
37	1.6 3954	4641	5330	6022	6717	7414	8115	8818	9524	*0233	698
38	1.7 0945	1660	2378	3099	3823	4549	5279	6012	6748	7487	727
39	1.7 8229	8974	9722	*0474	*1229	*1987	*2749	*3513	*4281	* 5053	758
40	1.8 5828	6606	7388	8173	8961	9753	*0549	*1348	*2151	*2958	792
41	1.9 3768	4582	5399	6221	7046	7875	8708	9544	*0385	*1229	829

VII.	$Q_{\phi} = \sec \phi \tan \phi$	$\dot{\phi} + \log_e \tan \phi$	$\left(\frac{\pi}{4} + \frac{\phi}{2}\right)$	(continued).
------	----------------------------------	---------------------------------	---	--------------

φ	·0	.1	•2	•3	•4	•5	•6	.7	•8	.9	Δ
42° 43 44	2.0 2078 2.1 0789 2.1 9937	2931 1684 *0877	3787 2583 *1822	4648 3486 *2772	5513 4394 *3726	6382 5306 *4686	7255 6223 *5650	8132 7145 *6620	9014 8071 *7594	9899 9001 *8574	+ 869 912 960
45	2° 2956	3055	3154	3254	3355	3456	3558	3660	3763	3866	101
46	2° 3970	4074	4179	4285	4391	4498	4605	4713	4821	4931	107
47	2° 5040	5151	5262	5373	54 ⁸ 5	5598	5712	5826	5941	6056	113
48	2· 6173	6289	6407	6525	6644	6764	6884	7005	7127	7249	120
49	2· 7373	7497	7621	7747	7873	8000	8128	8257	8386	8516	127
50	2· 8647	8779	8912	9045	9180	9315	9451	9588	9726	9864	135
51	3° 0004	0144	0286	0428	057 I	0716	0861	1007	1154	1 302	144
52	3° 1451	1601	1753	1905	2058	2212	2367	2524	2681	2839	154
53	3° 2999	3160	3322	3485	3649	3814	3980	4148	4317	4487	165
54	3· 4658	4831	5004	5179	5356	5533	5712	5 ⁸ 93	6074	6257	178
55	3· 6441	6627	6814	7-03	7193	7384	7577	7771	7967	8164	192
56	3· 8363	8563	8765	8969	9174	9381	9589	9799	*0011	*0225	207
57	4° 0440	0657	0876	1096	1318	1542	1768	1996	2226	2458	224
58	4° 2691	2927	3164	3404	3645	3889	4135	4383	4633	4 ⁸⁸⁵	244
59	4° 5139	5396	5655	5916	6180	6445	6714	6984	7257	7533	266
60	4° 781 1	8091	8374	8660	8948	9239	9533	9829	*0129	*0431	291
61	5° 0736	1043	1354	1668	1984	2304	2627	2953	3282	3615	320
62	5° 3950	4289	4632	4978	5327	5680	6036	6396	6760	7127	353
63	5° 7498	7873	8252	8635	9022	9412	9807	0207	0610	1018	391
64	6° 1430	1847	2268	269 3	3124	3559	3999	4444	4893	5348	435
65	6° 5808	6273	6743	7219	7700	8187	8679	9177	9681	0191	487
66	7° 0706	1228	1756	2291	2831	3379	3932	4493	5061	5635	548
67	7° 6217	6805	7402	8005	8616	9235	9862	*0497	*1140	*1791	620
68	8° 2451	3119	3796	4483	5178	5882	6596	7319	8052	8796	705
69	8·9549	*0312	*1087	* 1872	*2667	*3475	*4293	*5123	*5965	*6819	808
70	9·7685	8564	9455	*0360	*1278	*2210	*3155	*4115	*5088	*6078	933
71	10·7082	8101	9136	*0187	*1254	*2338	*3440	*4558	*5695	*6850	1085
72	11. 8023	9216	0428	1660	2912	4185	5480	6796	81 34	9496	1275
73	13. 0881	2290	3723	5181	6665	8176	9713	*1278	*287 1	*4493	1512
74	14. 614	147783	14:954	15 [.] 129	15 [.] 306	15:488	15 [.] 672	15:860	16 [.] 052	16·248	181
75 76 77	16 [.] 447 18 [.] 676 21 [.] 42 7	16.650 18.925 21.737	19.180	17.069 19.440 22.380	19.705		17°730 20°254 23°401	17:959 20:538 23:757	18·193 20·828 24·123	21.124	221 272 341
78 79	24. 881 29. 302		25 [.] 677 30 [.] 335			26·949 31·995	27·396 32·580	27 ·8 54 33·182	28·324 33·801		436 571

NEWTONIAN LAW OF RESISTANCE. 163

	Log Q	¢		Log Q	þ
φ	$Log Q_{\phi}$	$\operatorname{Log} \Delta Q_{\phi}$	φ	$\operatorname{Log} Q_{\phi}$	$\operatorname{Log} \Delta Q_{\phi}$
$\begin{array}{c} 1^{\circ} \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ \end{array}$	$\begin{array}{c} 8.54297\\ 8.84420\\ 9.02063\\ 9.14603\\ 9.24353\\ 9.32345\\ 9.32345\\ 9.39126\\ 9.45026\\ 9.45026\\ 9.50255\\ 9.54958\\ 9.59239\\ 9.63174\\ 9.66821\\ 9.70224\\ 9.70224\\ 9.70224\\ 9.70244\\ 9.70244\\ 9.70244\\ 9.70244\\ 9.70244\\ 9.70244\\ 9.70244\\ 9.70244\\ 9.70244\\ 9.70244\\ 9.70244\\ 9.70244\\ 9.70244\\ 9.70244\\ 9.7024\\ 9.7024\\ 9.7024\\ 9.5025\\ 9.50255\\ 0.06555\\ 0.02594\\ 0.04595\\ 0.06559\\ 0.08492\\ 0.10399\\ 0.12283\\ 0.14147\\ 0.15995\\ 0.16859\\ 0.08492\\ 0.10399\\ 0.12283\\ 0.14147\\ 0.15995\\ 0.17830\\ 0.19654\\ 0.21472\\ 0.23286\\ 0.25998\\ 0.26911\\ $	8:54337 8:54417 8:54536 8:54694 8:54894 8:55133 8:55133 8:55493 8:5692 8:56935 8:57418 8:57943 8:55743 8:55743 8:55743 8:55743 8:55743 8:55743 8:55743 8:55743 8:55743 8:55743 8:62816 8:61390 8:62816 8:61390 8:62816 8:63577 8:66387 8:67547 8:67547 8:67547 8:67547 8:67547 8:67547 8:67547 8:67547 8:67547 8:67547 8:67547 8:67547 8:77963 8:77963 8:77963 8:77963 8:77963 8:77963 8:77963 8:77963 8:779498 8:88075 8:88075 8:88984	41° 42 43 44 45 46 47 48 49 50 52 53 54 556 57 89 60 62 63 64 65 66 70 72 73 74 57 77 80	0.28728 0.30552 0.32385 0.34230 0.36089 0.37966 0.39864 0.41785 0.41785 0.43732 0.45708 0.47718 0.43732 0.45708 0.47718 0.49764 0.51850 0.53981 0.56651 0.53981 0.56651 0.65456 0.65456 0.67952 0.70531 0.73199 0.75565 0.78838 0.81828 0.81828 0.81828 0.81828 0.81828 0.81828 0.81828 0.81828 0.81828 0.81828 0.92971 1.07197 1.11688 1.12609 1.27129 1.33097 1.39587 1.46690 1.54526	8.91961 8.94009 8.96130 8.96130 8.96326 9.00600 9.02956 9.05395 9.07921 9.16058 9.13249 9.16058 9.13249 9.16058 9.13249 9.21088 9.2119 9.28368 9.2119 9.28368 9.31741 9.38884 9.31741 9.38884 9.32544 9.38884 9.42671 9.54995 9.59461 9.54995 9.59461 9.54995 9.59461 9.54995 9.59461 9.64126 9.64126 9.64126 9.74117 9.79478 9.85112 9.97297 0.03909 0.10917 0.18367 0.26307 0.34811 0.43952 0.53826 0.64556 0.76296

VIII.

11-2

NEWTONIAN	LAW	OF	RESISTANCE.
	IX		

λ=0.00					γ=0.00				
ø	(x)	(y)	(1)	(7')	ø	(x)	(y)	(<i>t</i>)	(v)
70° 69 68 67	27475 26051 24751 23559	37743 33933 30630 27750	27475 26051 24751 23559	2924 2790 2669 2559	30° 29 28	5774 5543 5317	1667 1536 1414	5774 5543 5317	1155 1143 1133
66 65 64	22460 21445 20503	25223 22995 21019	22460 21445 20503	2459 2366 2281	27 26 25	5095 4877 4663	1298 1189 1087	5095 4877 4663	1122 1113 1103
63 62 61	19626 18807 18040	19259 17686 16273	19626 18807 18040	2203 2130 2063	24 23 22 21	4452 4245 4040 3839	991.1 900.9 816.2 736.8	4452 4245 4040 3839	1095 1086 1079
60 59 58	17321 16643 16003	15000 13849 12805	17321 16643 16003	2000 1942 1887	20 19 18	3640 3443	662·4 592·8	3640 3443	1064 1058
57 56 55	15399 14826 14281	11856 10990 10198	15399 14826 14281	1836 1788 1743	17 16	3249 3057 2867	527.9 467.4 411.1	3249 3057 2867	1051 1046 1040
54 53 52	1 3764 1 3270 1 2799	9472 8805 8191	13764 13270 12799	1701 1662 1624	15 14 13	2679 2493 2309	359°0 310°8 266°5	2679 2493 2309	1035 - 1031 1026
51 50 49	12349 11918 11504	7625 7101 6617	12349 11918 11504	1589 1556 1524	12 11 10	2126 1944 1763	225.9 188.9 155.5	2126 1944 1763	1022 1019 1015
48 47 46	11106 10724 10355	6167 5750 5362	11106 10724 10355	1494 1466 1440	9 8 7	1584 1405 1228	125.4 98.8 75.4	1584 1405 1228	1012 1010 100\$
45 44 43	10000 9657 9325	5000 4663 4348	10000 9657 9325	1414 1390 1367	6 5 4	1051 875 699	55°2 38°3 24°5	1051 875 699	1006 1004 1002
42 41 40	9004 8693 8391	4054 3778 3520	9004 8693 8391	1346 1325 1305	3 2 1 0	524 349 175 0	13.7 6.1 1.2 0	524 349 175 0	1001 1000 1000
39 38 37	8098 7813 7536	3279 3052 2839	8098 7813 7536	1287 1269 1252	γ=0.01				
36 35 34	7265 7002 6745	2639 2451 2275	7265 7002 6745	1236 1221 1206	φ	(.x)	(יر)	(1)	(7′)
33 32 31	6494 6249 6009	2109 1952 1805	6494 6249 6009	1192 1179 1167	70° 69 68 67	28628 27057 25635 24340	39987 35783 32170 29042	28043 26547 25187 23945	3078 2924 2787 2663

IX. (continued).

		$\lambda = 0.0$	DI				$\lambda = 0.0$)2	
ø	(x)	(y)	(<i>t</i>)	(v)	φ	(x)	(y)	(<i>t</i>)	<i>(v)</i>
66°	23155	26315	22804	2550	63°	20666	20685	20137	2341
65	22065	23922	21752	2448	62	19744	18914	19268	2255
64	21059	21812	20779	2355	61	18888	17336	18458	2176
63	20127	19942	19874	2269	60	18089	15924	17699	2103
62	19260	18275	19032	2190	59	17342	14655	16988	2036
61	18450	16784	18244	2117	58	16641	13511	16318	1973
60	17693	15445	17506	2050	57	15982	12476	15687	1915
59	16982	14238	16812	1988	56	15360	11535	15090	1861
58	16314	13147	16158	1929	55	14771	10679	14524	1811
57	15683	12156	15540	1874	54	14214	9898	13987	1764
56	15086	11255	14955	1824	53	13685	9183	13476	1719
55	14521	10432	14401	1776	52	13182	8 526	12989	1678
54	13984	9679	13874	1732	51	12702	7923	12524	1639
53	13473	8989	13372	1690	50	12243	7367	12079	1602
52	12987	8355	12893	1650	49	11805	6853	11653	1568
51	12522	7770	12436	1613	48	11385	6379	11245	1535
50	12078	7231	11998	1579	47	10982	5939	10852	1505
49	11652	6732	11578	1546	46	10594	5530	10474	1475
48	11243	6271	11175	1514	45	10222	5151	10110	1448
47	10851	5842	10787	1485	44	9862	4798	9759	1422
46	10473	5444	10414	1457	43	9516	4469	9420	1397
45	10109	5074	10055	1431	42	9181	4162	9092	1374
44	9758	4729	9708	1406	41	8857	3875	8775	1352
43	9419	4407	9373	1382	40	8543	3607	8467	1330
42 41 40	9091 8774 8466	4107 3826 3563	9048 8734 8429	1359 1338 1318			λ=0.0	>3	
		λ=0.0)2		φ	(x)	(y)	(t)	(v)
φ	(x)	(y)	(t)	(v)	70° 69 68 67	31463 29483 27731 26167	45656 40356 35905 32125	29366 27687 26178 24812	3477 3263 3077 2914
70° 69 68 67	29943 28191 26621 25204	42590 37901 33913 30489	28669 27089 25661 24361	3260 3080 2921 2780	67 66 65 64	20107 24758 23481 22317	28884 26081 23639	23568 22430 21382	2914 2770 2641 2526
66	23916	27527	23172	2653	63	21250	21498	20415	2421
65	22741	24946	22079	2539	62	20267	19608	19518	2327
64	21661	22682	21071	2436	61	19357	17932	18682	2240

577		7)
IX. (continu	ed).
LAKE 1	0010001000	000

		λ=0.0	03				$\lambda = 0.0$	04	
φ	(<i>x</i>)	(<i>y</i>)	<i>(t)</i>	(v)	φ	(x)	(·r)	(<i>t</i>)	(v)
60°	18512	16438	17903	2161	57°	16633	13176	1 5999	2005
59	17725	15101	17172	2088	56	15953	12148	1 5 374	1944
58	16988	13899	16486	2021	55	15313	11217	1 4 7 8 4	1886
57	16298	12814	15839	1959	54	14709	10370	14225	1833
56	15648	11832	15229	1901	53	14139	9599	13695	1784
55	15035	10940	14652	1847	52	13598	8894	13190	1737
54	14455	10128	14104	1797	51	13084	8249	12709	1694
53	13906	9386	13584	1751	50	12596	7656	12250	1653
52	13385	8706	13088	1707	49	12130	7110	11811	1615
51	12889	8082	12615	1666	48	11684	6606	11390	1579
50	12416	7508	12164	1627	47	11258	6141	10986	1546
49	11964	6979	11731	1591	46	10850	5711	10598	1514
48	11532	6490	11317	1557	45	10458	5312	1022 5	1484
47	11117	6038	10918	1525	44	10081	4941	9865	1456
46	10720	5619	10536	1494	43	9718	4597	9518	1429
45	10338	5230	10167	1466	42	9368	4276	9183	1404
44	9970	4868	9812	1438	41	9030	3977	8859	1380
43	9615	4532	9469	1413	40	8703	3698	8545	1357
42 41 40	9273 8942 8622	4218 3925 3652	9138 8817 8506	1 388 1 365 1 343			λ=0.0	>5	
	2	$\lambda = 0.0$	94		φ	(x)	(y)	(1)	(v)
φ	(.x')	())	(1)	(v)	70 [°] 69 68 67	35424 32747 30466 28489	53902 46734 40938 36164	31056 29103 27381 25846	4088 3755 3482 3253
70° 69 68 67	33257 30981 28999 27252	49344 43250 38216 33996	30152 28352 26747 25304	3746 3483 3261 3070	66 65 64	26754 25212 23831	32169 28785 25887	24466 23215 22074	3058 2889 2741
66	25697	30418	23997	2903	63	22583	23383	21028	2609
65	24300	27351	22806	2757	62	21448	21202	20064	2493
64	23037	24701	21715	2627	61	20409	19288	19171	2388
63	21886	22392	20711	2510	60	19454	17599	18342	2293
62	20833	20367	19782	2405	59	18571	16099	17569	2207
61	19863	18580	18920	2310	58	17752	14762	16845	2128
60	18966	16995	18116	2224	57	16988	13563	16165	2056
59	18134	15581	17365	2145	56	16275	12485	15526	1989
58	17358	14315	16661	2072	55	15605	11511	14922	1928

		λ=0.0	5)	N=0.0	5	
φ	<i>(x)</i>	(y)	(1)	(v)	ø	(x)	(y)	(1)	(v)
54°	14976	10628	14351	1871	15°	2716	365.6	2698	1050
53	14382	9825	13810	1818	14	2525	316.1	2509	1044
52	13821	9093	13296	1769	13	2336	270.7	2322	1038
51	13288	8424	12806	1724	12	2148	229 [.] 2	2137	1033
50	12783	7811	12339	1681	11	1963	191.4	1953	1029
49	12302	7247	11893	1641	10	1779	157.3	1771	1025
48	11843	6728	11466	1603	9	1597	126·8	1590	1021
47	11404	6249	11056	1567	8	1415	99'7	1410	1017
46	10984	5807	10663	1534	7	1235	76'0	1232	1014
45	10582	5397	10285	1 503	6	1057	55.6	1054	1011
44	10195	5017	9921	1474	5	879	38.5	877	1008
43	9823	4664	9570	1446	4	702	24.6	700	1006
42	9465	4336	9231	1419	3	526	13.8	525	1004
41	9120	4031	8903	1394	2	350	6.1	349	1002
40	8786	3746	8585	1370	+ I	175	1.5	175	1001
39 38 37	8464 8152 7849	3480 3232 2999	8278 7980 7690	1348 1327 1307	0 - I 2 3	0 174 348 523	0 1·5 6·1 13·7	0 175 349 523	1000 999 999 999
36	7555	2782	7408	1288	4 56	697	24·3	698	999
35	7270	2578	7134	1270		871	38·1	873	1000
34	6993	2388	6867	1252		1045	54·9	1048	1000
33	6722	2209	6607	1236	7	1220	74 ^{.8}	1224	1001
32	6459	2041	6353	1220	8	1395	97 ^{.8}	1400	1003
31	6203	1884	6104	1206	9	1571	124 [.] 1	1578	1004
30	5952	1736	5862	1192	IO	1748	153.7	1755	1007
29	5707	1597	5624	1178	II	1925	186.5	1934	1009
28	5467	1467	5391	1165	I2	2103	222.7	2114	1012
27	5233	1345	5163	1152	13	2282	262·5	2295	1015
26	5003	1231	4939	1142	14	2462	305·7	2478	1018
25	4777	1123	4720	1131	15	2644	352·6	2662	1022
24	4556	1022	4504	1121	16	2827	403°3	2847	1026
23	4339	927.7	4291	1111	17	3011	457°9	3034	1030
22	4125	839.2	4082	1102	18	3197	516°6	3223	1035
21	3915	756 ·5	3877	1093	19	3384	579°4	3414	1040
20	3708	679·1	3674	1085	20	3574	646°5	3607	1045
19	3504	606·9	3474	1077	21	3766	718°2	3802	1051
18	3303	539 ^{.7}	3276	1069	22	. 3959	794 [.] 5	4000	1057
17	3105	477 ^{.2}	3081	1062	23	4156	875 [.] 8	4200	1063
16	2910	419 ^{.2}	2888	1056	24	4354	962 [.] 1	4403	1070

T 37	/ . *	7
IX. (continue	d
TAF' I	0010000000	ci jo

		λ=0.0	5				λ=0.0	5	
φ	(.x)	(<i>y</i>)	(1)	(v)	φ	(x)	(y')	(<i>t</i>)	(v)
25°	4555	1054	4609	1078	64°	18244	17883	19327	1995
26	4760	1151	4818	1085	65	18959	19382	20147	2052
27	4967	1255	5030	1094	66	19716	21043	21024	2113
28	5177	1364	5247	1102	67	20519	22891	21963	2178
29	5391	1480	5466	1111	68	21373	24954	22972	2246
30	5609	1603	5690	1121	69	22283	27263	24059	2319
31	5830	1734	5918	1131	70	23253	29859	25235	2397
32	6055	1872	6151	1142	71	24289	32789	26509	2479
33	6285	2018	6388	1153	72	25400	36109	27897	2566
34	6520	2173	6631	1165	73	26591	39889	29414	2659
35	6759	2338	6879	1177	74	27871	44213	31079	2758
36	7003	2512	7133	1190	75	29249	49185	32915	2862
37 38 39	7253 7509 7771	2697 2894 3102	7392 7659 7932	1204 1218 1233	76 77 78 79	30734 32336 34068 35939	54932 61614 60431 78639	34950 37217 39758 42627	2973 3089 3211 3338
40 41 42	8040 8316 8599	3324 3559 3810	8213 8501 8798	1249 1265 1282	79 80	37961	89563	45890	34.70
43 44 45	8890 9189 9498	4077 4361 4664	9104 9419 9744	1 300 1 320 1 340			λ=0.0	6	
46 47 48	9816 10144 10483	4988 5334 5704	10080 10428 10788	1360 1382 1405	¢ 	(x)	(y)	(1)	(v)
49 50 51	10834 11197 11573	6100 6525 6982	11161 11549 11952	1429 1455 1482	70° 69 68 67	38133 34883 32196 29920	59745 51042 44214 38715	32116 29965 28096 26449	4545 4102 3755 3474
52	1 1963	7473	1 237 1	1510	66	27956	34196	24981	3240
53	1 2369	8002	1 2809	1540	65	26236	30420	23659	3042
54	1 2791	8572	1 3265	1571	64	24713	27223	22461	2871
55	13231	9188	13742	1603	63	23349	24488	21368	2722
56	13689	9855	14241	1638	62	22119	22123	20364	2590
57	14168	10579	14765	1675	61	21001	20064	19438	2473
58	14668	11365	15315	1713	60	19979	18256	18581	2368
59	15193	12221	15894	1754	59	19040	16661	17783	2274
60	15743	13155	16505	1797	58	18171	15243	17038	2188
61	16320	14176	17150	1842	57	17366	1 3978	16340	2110
62	16928	15296	17833	1891	56	16615	12844	15684	2038
63	17568	16526	18557	1941	55	15914	11823	15066	1972

		λ=0.0	6			2	y = 0.0	7	
φ	(x)	(y)	(<i>t</i>)	(v)	φ	(x)	(<i>y</i>)	(<i>t</i>)	(v)
54°	15256	10900	14482	1912	51°	13724	8803	1 301 1	1788
53	14637	10064	13930	1856	50	13181	8144	1 2 5 2 7	1740
52	14053	9302	13405	1803	49	12667	7541	1 2 0 6 5	1695
51	13501	8608	12906	1755	48	12177	6988	11624	1654
50	12977	7973	12431	1710	47	11711	6479	11202	1615
49	12480	7390	11977	1667	46	11267	6011	10797	1578
48	12006	6855	11543	1628	45	10842	5578	10409	1544
47	11554	6362	11128	1591	44	10434	5178	10035	1511
46	11122	5906	10729	1556	43	10044	4807	9675	1481
45	10709	5486	10346	1523	42	9668	4463	9328	1452
44	10312	5096	9977	1492	41	9307	4143	8992	1425
43	9931	4734	9621	1463	40	8959	3846	8668	1400
42 41 40	9565 9212 8871	4398 4086 3795	9278 8947 . 8626	1436 1410 1385			λ=o.o	8	
	2	λ=0.0	7	-	φ	(x)	(y)	(<i>t</i>)	(v)
φ	(x)	(y)	(t	(v)	70° 69 ³ 601	46794 45170 43694	79353 74922	35058 34284	6255 5952 5686
70 [°] 69 68 67	41699 37561 34292 31609	67658 56575 48267 41785	33405 30979 28918 27129	5200 4568 4105 3747	691 691 69 683 4	43094 42342 41096 39942	70947 67355 64087 61099	33555 32866 32211 31589	5450 5240 5050
66	29348	36580	25554	3460	$ \begin{array}{r} 68\frac{1}{2} \\ 68\frac{1}{4} \\ 68 \end{array} $	38867	5 ⁸ 354	30995	4 ⁸ 77
65	27403	32310	24148	3222		37863	55820	30426	4720
64	25705	28747	22884	3022		36921	53473	29882	4576
63	24203	25732	21736	2850	67 3	36034	51292	29360	4442
62	22860	23152	20687	2700	67 <u>1</u>	35197	49258	28858	4319
61	21650	20922	19724	2569	671	34405	47358	28375	4204
60	20551	18978	18834	2452	67	33653	45576	27909	4097
59	19546	17272	18009	2348	66	30988	39442	26198	3731
58	18623	15765	17241	2254	65	28751	34528	24691	3439
57	17770	14426	16523	2169	64	26832	30503	23347	3199
56	16979	13230	15850	2091	63	25159	27146	22136	2997
55	16242	12157	15216	2021	62	23682	24306	21036	2825
54	15553	11191	14619	1955	61	22362	21875	20030	2676
53	14906	10317	14054	1895	60	21174	19773	19105	2545
52	14298	9524	13519	1839	59	20095	17941	18250	2429

Y	37	1			7)
l	X. ((cc)	nti	1111	<i>ed</i>).
		100			

		λ=0.0	8			2	λ=0.0	9	
φ	(x)	())	(1)	(v)	φ	(x)	(ינ)	(1)	(v)
58° 57 56	19109 18203 17366	16332 14909 13644	17456 16716 16023	2326 2232 2148	66‡° 66 65	33715 32970 30336	44655 42972 37186	27382 26936 25301	4186 4077 3706
55 54 53	16590 15866 15190	12514 11500 10585	15373 14762 14184	2071 2001 1937	64 63 62	28131 26244 24601	32560 28773 25615	23860 22574 21414	3412 3171 2970
52 51 50	14555 13958 13394	9758 9007 8323	1 3637 1 31 18 1 2625	1878 1823 1772	61 60 59	23151 21857 20692	22943 20655 18677	20360 19395 18506	2798 2650 2520
49 48 47	12861 12355 11874	7698 7126 6601	12155 11707 11278	1725 1681 1640	58 57 56	19635 18669 17781	16950 15433 14091	17684 16919 16206	2405 2302 2210
46 45 44 43	11416 10978 10560 10159	6118 5673 5262 4882	10867 10473 10094 9730	1601 1565 1531 1500	55 54 53	16961 16199 15490	12898 11830 10871	15538 14910 14319	2127 2051 1982
43 42 41 40	9775 9405 9049	4529 4202 3898	9378 9039 8711	1470 1441 1415	52 51 50	14827 14204 13618	10006 9223 8512	13760 13230 12727	1918 1860 1806
		λ=0.00			49 48 47	13064 12541 12044	7864 7272 6729	12249 11792 11356	1756 1709 1666
		~_00	9		46 45	11571 11121	6231 5773	10939 10539	1626 1588
φ	(x)	(1)	(1)	(v)	44 43	10691 10279	5350 4959	10155 9786	1552 1519
70° 69 3 69 <u>1</u>	55375 52545 50134	99919 92196 85701	37405 36384 35453	8411 7718 7167	42 41 40	9885 9506 9142	4598 4263 3952	9430 9087 8755	1488 1458 1431
69 1 69 683	48035 46180 44520	80124 75259 70962	34594 33795	6715 6334 6009		2	$\gamma = 0.1$	0	
68 <u>1</u> 68 <u>1</u>	43019 41651	67127 63676	33049 32346 31684	5726 5477	φ	(x)	(y)	(1)	(v)
68 673 673 673	40395 39235 38159 37155	60547 57694 55079 52670	31055 30458 29889 29345	5256 5058 4879 4716	70° 694 691 691 691	81218 69862 63221 58519	166085 135118 117242 104747	42040 40009 38466 37181	19221 13684 11178 9669
67 663 661	36215 35333 34501	50443 48376 46452	28824 28324 27844	4567 4430 4304	69 68 <u>4</u> 68 <u>4</u>	54884 51926 49437	95214 87558 81198	36064 35067 34163	8631 7862 7262

		$\gamma = 0.10$	0				$\gamma = 0.1$	0	
ø	(x)	(y)	(<i>t</i>)	(v)	φ	(<i>x</i>)	(y)	(<i>t</i>)	(v)
681°	47292	757 ⁸ 5	33333	6776	39°	8880	3712	8476	1419
68	45409	71094	32564	6372	38	8534	3437	8162	1394
674	43733	66972	31846	6030	37	8201	3182	7858	1369
67 <u>1</u> 671 671 67	422 25 40855 39601	63308 60021 57049	31172 30537 29935	5734 5476 5248	36 35 34	7879 7568 7267	2943 2721 2514	7564 7277 6999	1346 1325 1304
66 3	38446	54345	29364	5044	33	6974	2320	6728	1285
66 <u>1</u>	37377	51870	28819	4861	32	6690	2140	6464	1266
66 <u>1</u>	36382	49594	28299	4694	31	6414	1970	6207	1249
66	35451	47492	27801	4543	30	6146	1812	5955	1232
65 3	34579	45543	27324	4404	29	5884	1664	5710	1216
65 <u>3</u>	33757	43730	26865	4275	28	5629	1526	5470	1202
65‡	32982	42039	26424	4157	27	5380	1396	5235	1187
65	32248	40456	25999	4047	26	5137	1275	5005	1174
64	29657	35018	24436	3673	25	4899	1162	4779	1161
63	27492	30673	23059	3379	24	4667	1056	4558	1149
62	25642	27117	21828	3139	23	4439	956:4	4340	1137
61	24033	24152	20717	2939	22	4215	863:8	4126	1126
60	22613	21641	19706	2769	21	3996	777`4	3916	1116
59	21347	19491	18780	2621	20	3781	696`9	3709	1106
58	20207	17629	17926	2493	19	3569	621`9	3505	1097
57	19172	16004	17135	2379	18	3361	552 ·2	3304	1088
56	18226	14575	16399	2278	17	3156	487·5	3106	1080
55	17357	13310	15711	2187	16	2954	427·7	2910	1072
54	16554	12183	15067	2105	15	2755	372·4	2717	1065
53	15808	11176	14460	2030	14	2558	321·6	2525	1058
52	15113	10270	13888	1962	13	2364	275·0	2336	1051
51	14463	9452	13347	1899	12	2172	232.5	2149	1045
50	13853	8711	12834	1842	11	1983	194.0	1963	1039
49	13278	8038	12346	1790	10	1795	159.2	1779	1034
48	12735	7424	11881	1739	9	1610	128·2	1596	1029
47	12221	6863	11438	1694	8	1426	100·7	1415	1024
46	11733	6349	11014	1651	7	1243	76·6	1235	1020
45	11269	5876	10608	1612	6	1062	56°0	1057	1016
44	10826	5441	10218	1574	5	883	38°7	879	1013
43	10403	5040	9843	1539	4	704	24°7	702	1010
42	9999	4669	9483	1506	3	527	13.8	526	1007
41	961 1	4326	9135	1476	2	351	6.1	350	1004
40	9238	4007	8800	1447	+ 1	175	1.5	175	1002

IX. (continued).

)	f = 0.10	C				y = 0. 1	0	
φ	(x)	(y)	(<i>t</i>)	(v)	φ	(x)	(1)	(1)	(v)
$ \begin{array}{c} 0 \\ - I^{\circ} \\ 2 \\ 3 \end{array} $	0 174 348 521	0 1.5 6.1 13.6	0 174 349 523	1000 998 997 996	40° 41 42	7727 7981 8241	3150 3367 3597	8050 8326 8611	1199 1213 1227
4 56	695	24°2	697	996	43	8507	3841	8903	1243
	867	37°8	871	995	44	8780	4100	9204	1259
	1040	54°5	1046	995	45	9060	4375	9514	1275
7	1213	74°2	1221	995	46	9348	4668	9834	1293
8	1386	96°9	1396	996	47	9644	4980	10164	1311
9	1559	122°8	1572	997	48	9948	5312	10505	1331
10 11 12	1733 1907 2082	151.9 184.1 219.7	1748 1925 2103	998 999 1001	49 50 51 52	10262 10585 10919	5667 6046 6450 6884	10858 11224 11603 11997	1351 1372 1393 1417
13 14 15	2257 2433 2610	258·5 300·8 346·6	2283 2463 2644	1003 1006 1008	53 54	11203 11620 11988 12370	7 348 7 846 8 382	11997 12407 12833 13278	1417 1441 1466 1493
16 17 18	2788 2967 3147	395°9 449°0 505°8	2827 3012 3198	1011 1015 1018	55 56 57 58	12766 13177 13604	8958 9579	13742 14228 14736	1520 1549 1580
19	3329	566·6	3385	1022	59	14049	10975	15269	1612
20	3512	631·5	3575	1027	60	14512	11761	15829	1645
21	3697	700·6	3767	1031	61	14994	12614	16418	1680
22	3884	774°1	3961	1036	62	15497	13541	17039	1717
23	4072	852°1	4157	1042	63	16023	14552	17696	1755
24	4263	935°0	4356	1048	64	16573	15655	18390	1795
25	4455	1023	4557	1054	65	17149	16863	19127	1838
26	4650	1116	4762	1060	66	17752	18188	19909	1882
27	4848	1214	4969	1067	67	18386	19644	20743	1928
28	5048	1318	5180	1074	68	19051	21250	21634	1976
29	5251	1429	5394	1082	69	19750	23026	22587	2027
30	5457	1545	5612	1090	70	20485	24994	23611	2080
31	5666	1668	5834	1099	71	21260	27183	24713	2134
32	5878	1798	6059	1108	72	22077	29625	25903	2192
33	6095	1936	6290	1117	73	22938	3 ² 357	27192	2251
34	6314	2082	6525	1127	74	23846	35426	28595	2312
35	6538	2236	6765	1138	75	24805	38886	30127	2376
36	6767	2398	7010	1149	76	25818	42804	31806	2441
37 38 39	6999 7237 7479	2571 2753 2946	7264 7517 7780	1161 1173 1185	77 78 79 80	26886 28014 29202 30454	47258 52347 58195 64955	33657 35708 37994 40561	2508 2575 2644 2712

)	/=0.1	I)	√=0.1	2	
¢	(x)	('')	(<i>t</i>)	(v)	φ	(x)	())	(1)	(v)
68 ¹ °	57839	99473	35819	9888	67°	52928	84598	33410	8758
68	54069	90087	34731	8752	66^{3}_{4}	49912	77534	32487	7905
67 ³	51047	82651	33768	7927	66^{1}_{2}	47412	71749	31655	7256
67 <u>1</u>	48527	76529	32897	7292		45280	66874	30894	6740
671	46370	71353	32099	6785		43424	62679	30191	6316
671	44487	66888	31 362	6366		41782	59012	29536	5960
66 <u>3</u>	42817	62978	30675	6014	65 <u>1</u>	40311	55766	28922	5656
66 <u>3</u>	41319	59511	30030	5711	65 <u>1</u>	38981	52864	28344	5392
66 <u>4</u>	39962	56409	29423	5448	65	37767	50246	27797	5160
66	38723	53608	28849	5215	64 3	36652	47868	27277	4953
65辈	37583	51064	28303	5009	64 <u>3</u>	35622	45696	26782	4768
65 <u>년</u>	36529	48737	27784	4823	64 <u>3</u>	34665	43700	26310	4601
65 <u>4</u>	35549	46600	27287	4656	64	33772	41858	25858	4449
65	34635	44627	26813	4503	63 ³	32935	40152	25424	4311
64 3	3377 ⁸	42799	26357	4363	63 ¹ / ₂	32148	38565	25007	4183
64 <u>1</u>	32971	41099	25919	4235	63 <u>4</u>	31406	37085	24605	4065
64 <u>1</u>	32211	39514	25498	4116	63	30704	35701	24218	3956
64	31492	38030	25092	4006	62	28230	30944	22795	35 ⁸ 7
63 62 61	28954 26837 25029	32937 28867 25535	23601 22284 21107	3633 3341 3103	61 60	26167 24405	27142 24025	21537 20411	3298 3063 2868
60 59 58	23456 22070 20833	22754 20399 18379	20043 19074 18185	2905 2736 2591	59 58 57	22872 21520 20314	21422 19214 17319	19392 18462 17608	2702 2559
57	19718	16630	17364	2464	56	19227	15676	16818	2434
56	18707	15101	16602	2352	55	18239	14239	16086	2324
55	17783	13755	15893	2252	54	17336	12973	15403	2226
54	16932	12563	15230	2163	53	16506	11850	14762	2138
53	16147	11501	14607	2082	52	15738	10849	14160	2059
52	15417	10550	14021	2008	51	15024	9952	13593	1986
5 1 50 49	14737 14100 13501	9694 8921 8221	1 3467 12943 1 2446	1941 1880 1823	50 49	14359 13735	9144 8414	13057 12550	1920 1860
48	12938	7584	11972	1771	48	13150	7752	12067	1805
47	12406	7003	11521	1723	47	12597	7149	11607	1753
46	11901	6471	11090	1678	46	12076	6599	11169	1706
45	11422	5983	10678	1636	45	11581	6096	10750	1662
44	10967	5535	10282	1597	44	11111	5634	10348	1620
43	10532	5123	9902	1560	43	10664	5209	9963	1582
42 41 40	10116 9719 9337	4742 4390 4064	9537 9185 8846	1526 1494 1464	43 42 41 40	10237 9829 9438	4818 4457 4123	9593 9237 8893	1546 1513 1481

IX. (continued).

		λ=0.	13				λ=0.	14	
φ	(x)	(y)	(<i>t</i>)	(v)	¢	(x)	(y)	(1)	(7')
66° 65 1 65 <u>1</u>	51486 48547 46115	78857 72293 66923	32101 31226 30436	8648 7802 7156	$ \begin{array}{r} 65^{\circ} \\ 64\frac{3}{4} \\ 64\frac{1}{2} \\ 64\frac{1}{4} \end{array} $	49792 46991 44667 42683	73004 67031 62130 57993	30811 29988 29245 28565	8435 7620 6998 6503
651 65 642	44042 42239 40644	62400 58510 55110	29715 29048 28427	6644 6225 5873	64 63 ³	40954 39424	54428 51307	27936 27349	6097 5756
64 1 641 64	39217 37925 36747	52100 49407 46979	27844 27296 26776	5573 5312 5083		38052 36810	48540 46062	26798 26279	5464 5211
63 ³ 63 ¹ 63 ¹	35665 34666	44773 42756	26283 25813	4879 4697	$ \begin{array}{r} 63 \\ 623 \\ 621 \\ 621 \\ \end{array} $	35676 34634 33670	43825 41790 39929	25787 25319 24873	4988 4790 4612
63 $62\frac{3}{4}$ $62\frac{1}{2}$	33737 32870 32058 31294	40903 39192 37607 36133	25363 24933 24520 24123	4533 43 ⁸ 3 4247 4121	62 1 62 61 3	32775 31938 31154	38217 36636 35170	24447 24038 23646	4452 4306 4173
62 1	30574	34757	23741	4005	61 <u>1</u>	30417	33804	23269	4050
62	29893	33469	23372	3898	61 <u>1</u>	29721	32530	22905	3937
61	27491	29041	22015	3535	61	29063	31336	22554	3832
60	25487	25496	20814	3251	60	26739	27225	21261	3478
59	23774	22586	19737	3021	59	24798	23928	20114	3200
58	22283	20152	18761	2829	58	23137	21216	19083	2975
57	20967	18086	17869	2666	57	21690	18944	18148	2788
56	19792	16310	17048	2526	56	20412	17011	17292	2628
55	18733	14769	16289	2403	55	19269	15349	16503	2491
54	17771	13419	15583	2295	54	18239	13903	15773	2371
53	16890	12228	14924	2199	53	17301	12636	15093	2265
52	16079	11171	14306	2113	52	16443	11517	14457	2171
51	15329	10228	13725	2035	51	15653	10523	1 3860	2087
50	14632	9382	13176	1964	50	14921	9635	1 3298	2010
49	13981	8620	12657	1899	49	14240	8837	1 2768	1941
48	13371	7930	12165	1840	48	13604	8118	12265	1878
47	12798	7304	11697	1785	47	13008	7467	11787	1820
46	12257	6734	11250	1735	46	12447	6876	11333	1766
45	11746	6214	10824	1688	45	11918	6338	10899	1717
44	11261	5738	10416	1645	44	11417	5846	10485	1671
43	10801	5300	10025	1605	43	10942	5395	10088	1629
42	10362	4898	9650	1567	42	10491	4981	9707	1589
41	9943	4527	9289	1532	41	10060	4600	9341	1552
40	9542	4185	8941	1499	40	9649	4249	8989	1518

174

-	2	$\gamma = 0.1$	5			2	$\gamma = 0.1$	5	
φ	(x)	(y)	(1)	<u>(</u> v)	¢	(x)	(y)	(<i>t</i>)	(v)
64 ¹ °	55459	82861	31412	10758	43°	8164	3634	8719	1192
64 <u>1</u>	51164	73902	30412	9185	44	8415	3872	9007	1205
64	47909	67189	29549	8139	45	8671	4124	9304	1220
63 ⁸	45292	61852	28782	7379	46	8934	4392	9610	1235
63 ¹ / ₂	43107	57444	28087	6794	47	9204	4676	99 25	1250
631/ ₂	41233	53707	27449	6326	48	9480	4977	10250	1266
63 623 623 623	39595 38140 36834	50473 47634 45111	26858 26305 25786	5940 5614 5335	49 50 51	9764 10055 10355	5298 5639 6003	10586 10933 11292	1283 1301 1320
621 62 613 613	35649 34566 33569	42847 40799 38933	25296 24831 24388	5091 4877 4687	52 53 54	10663 10981 11308	6390 6804 7247	1 1665 1 2052 1 2454	1339 1359 1380
61 61 61 61	32646 31787 30984	37224 35650 34195	23966 23562 23174	4515 4360 4220	55 56 57	13546 11994 12354	7720 8227 8772	12872 13307 13762	1402 1425 1449
60	28220	29304	21764	3761	58	12727	9 356	14236	1473
59	25979	25498	20533	3417	59	13112	9986	14733	1499
58	24104	22436	19437	3147	60	13512	10664	15253	1526
57	22498	19912	18451	2927	61	1 3926	11396	15799	1554
56	21096	17794	17555	2745	62	14356	12187	16373	1584
55	19856	15989	16734	2589	63	14802	13045	16978	1614
54	18748	14433	15976	2455	64	15265	13975	17615	1645
53	17745	13079	15273	2338	65	15747	14986	18289	1679
52	16833	11890	14618	2235	66	16249	16087	19003	1713
51	15998	10839	14004	2143	67	16772	17289	19760	1748
50	15227	9905	13428	2060	68	17316	18605	20566	1785
49	14514	9069	12884	1985	69	17884	20047	21425	1823
48	13849	8318	12370	1918	70	18477	21632	22344	1862
47	13228	7640	11883	1856	71	19095	23379	23328	1903
46	12646	7026	11420	1799	72	19741	25310	24387	1944
45	12098	6468	10979	1747	73	20415	27450	25528	1987
44	11580	5959	10557	1698	74	21120	29828	26763	2031
43	11090	5494	10154	1654	75	21855	32482	28104	2075
42 41 40 +	10625 10182 9760	5067 4676 4315	9767 9396 9039	1612 1573 1537	76 77 78	22623 23424 24260	35453 3 ⁸ 794 42567	29567 31170 32935	2120 2166 2211
0 - 40 41 42	0 7444 7679 7919	0 2996 3197 3409	0 7899 8165 8438	1000 1154 1166 1179	79 80	25131 26037	46851 51746	34892 37077	2256 2301

		λ=0.1	16				λ=0.	17	
φ	(x)	(y)	(1)	(v)	φ	(x)	(y)	(1)	(v)
63°	45906	61547	28320	7786	$ \begin{array}{r} 62\frac{1}{2}^{\circ} \\ 62\frac{1}{4} \\ 62 \end{array} $	49842	67590	28682	9367
$62\frac{3}{4}$	43499	56847	27610	7095		46493	61188	27858	8216
$62\frac{1}{2}$	41472	52931	26963	6556		43844	56179	27132	7401
62 <u>1</u>	39722	49588	26367	6121	$ \begin{array}{c} 61\frac{3}{4} \\ 61\frac{1}{2} \\ 61\frac{1}{4} \end{array} $	41656	52085	26476	6783
62	38185	46681	25813	5759		39795	48638	25877	6295
613	36815	44118	25295	5453		38176	45672	25322	5 ⁸ 97
61 <u>1</u>	35581	41833	24806	5189	61	36746	43078	24805	5563
61 <u>1</u>	34459	39776	24344	4958	60,1	35465	40779	24319	5278
61	33430	37912	23906	4754	60,2	34307	38722	23861	5031
60 3	32482	36209	23488	4573	60 <u>1</u>	33250	36863	23427	4814
60 <u>1</u>	31602	34647	23088	4409	65	32280	35173	23013	4622
60 <u>1</u>	30783	33206	22706	4261	59 ³	31382	33627	22619	4450
60	30016	31871	22339	4125	59 ¹ / ₂	30548	32204	22242	4295
59 ³	29296	30630	21986	4002	591/	29770	30889	21880	4154
59 ¹ / ₂	28617	29472	21645	3887	59	29040	29669	21532	4026
59‡	27976	28388	21317	3782	58	26512	25540	20261	3604
59	27368	27371	20999	3684	57	24449	22299	19145	3284
58	25215	23855	19826	3352	56	22712	19673	18147	3032
57	23408	21018	18781	3093	55	21217	17497	17245	2826
56	21857	18673	17838	2878	54	19909	15662	16422	2654
55	20502	16700	16980	2700	53	18747	14091	15665	2508
54	19301	15016	16191	2549	52	17705	12733	14965	2381
53	18225	13562	15463	2419	51	16762	11547	14313	2270
52	17253	12294	14786	2305	50	15902	10503	13704	2172
51	16367	11179	14154	2204	49	15112	9577	13132	2085
50	15554	10193	13562	2114	48	14382	8752	12593	2006
49	14804	9314	13005	2033	47	13705	8013	12084	1935
48	14108	8528	12479	1960	46	1 307 3	7347	11602	1870
47	13460	7821	11981	1894	45	12482	6746	11144	1811
46	12854	7182	11509	1834	44	1 1927	6200	10707	1757
45	12285	6603	11059	1778	43	11403	5703	10290	1707
44	11750	6076	10630	1727	42	10909	5250	9892	1661
43	11243	5596	10221	1680	41	10440	4835	9510	1618
42 41 40	10764 10309 9875	5156 4753 4383	9828 9452 9090	1636 1595 1557	40	9994	4454	9143	1578

1X. (continued).

		$\lambda = 0.1$	18				$\lambda = 0.1$	19	
φ	(x)	(.y)	(<i>t</i>)	(v,)	ø	(x)	(y)	(<i>t</i>)	(v)
61 ¹ °	44123	55419	26650	7705	60 ³⁰	47499	60177	26921	9115
61	41775	51154	25987	7003	60 ¹ / ₂	44326	54540	26163	7999
60 ³ / ₄	39804	47615	25384	6459	60 ¹ / ₂	41815	50122	25493	7207
60 <u>1</u>	38107	44601	24830	6023	60	39739	46508	24889	6608
60 <u>1</u>	36621	41986	24314	5662	59¥	37972	43462	24336	6134
60	35298	39684	23832	5357	59½	36434	40839	23824	5747
59 ^월	34108	37632	23378	5094	59 1	35075	38543	23346	5423
59 ^월	33026	35787	22949	4866	59	33858	36507	22897	5146
594	32037	34115	22541	4664	58 _発	32757	34683	22473	4906
59	31124	32589	22152	44 ⁸ 4	581	31752	33035	22070	4696
58¥	30279	31189	21780	4323	581	30828	31534	21688	4509
58½	29491	29897	21424	4177	58	29974	30161	21322	4342
58 <u>‡</u>	28754	28701	21082	4043	57축	29180	28896	20972	4192
58	28063	27588	20753	3922	57축	28438	27726	20636	40 55
57	25657	23809	19547	3520	57축	27743	26641	20313	3930
56	23684	20826	18484	3215	57	27089	25629	20002	3815
55	22018	18400	17532	2972	56	24806	22176	18858	3435
54	20580	16383	16670	2774	55	22923	19435	17846	3144
53	19318	14677	15880	2608	54	21327	17196	16937	2911
52	18196	13214	15154	2466	53	19945	15328	16112	2721
51	17188	11946	14480	2343	52	18730	13744	15355	2560
50	16274	10837	13852	2235	51	17648	12382	14657	2423
49	15439	9860	13264	2140	50	16673	11200	14009	2305
48	14672	8992	12712	2055	49	15788	10163	13404	2200
47	13962	8217	12191	1978	48	14979	9248	12836	2108
46	13303	7522	11698	1909	47	14234	8435	12303	2025
45	12688	6896	11231	1846	46	13545	7708	11799	1951
44	12112	6330	10786	1789	45	12904	7056	11321	1883
43	11570	5816	10362	1736	44	12305	6467	10868	1822
42	11059	5347	9957	1687	43	11743	5934	10436	1766
41 40	10576 10117	4920 4528	9569 9197	1642 1600	42 41 40	11215 10716 10244	5450 5008 4605	10025 9631 9253	1714 1667 1623

IX. (continued).

IX. (continued).

		λ=0:2	20				λ=0':	20	
ø	(x)	()	(<i>t</i>)	(v)	ø	(x)	(1)	(<i>t</i>)	(v)
60°	47859	59443	26438	9557	30°	6592	1991	6165	1327
59 ³	44421	53516	25667	8272	29	6290	1820	5901	1305
59 ¹ / ₂	41759	48973	24993	7390	28	5997	1661	5643	1285
59 1	39590	45308	24389	6736	27	5714	1513	5393	1265
59	37761	42249	23839	6227	26	5439	1376	5148	1246
58 _북	36182	39633	23331	5816	25	5172	1249	4909	1228
58 <u>1</u>	34794	37356	22858	5474	24	4912	1130	4 ⁶ 75	1212
58 <u>1</u>	33556	35345	22415	5185	23	4659	1020	4446	1196
58	32439	33550	21997	4936	22	4413	918-3	4221	1181
57 ²	31424	31932	21601	4718	21	4172	823 ^{.5}	4001	1167
57 ¹ / ₂	30492	30463	21225	4525	20	3937	735 ^{.7}	3785	1153
57 ¹ / ₂	29633	29121	20865	4353	19	3708	654 [.] 4	3572	1141
57	2S835	27887	20522	4199	18	3483	579 ^{.2}	3364	1129
56	26123	23787	19276	3707	17	3263	509 ^{.8}	3158	1117
55	23960	20638	18191	3348	16	3047	445 ^{.9}	2956	1107
54	22168	18122	17228	3071	15	2835	387 ·1	2756	1096
53	20641	16058	16360	2850	14	2627	333·3	2559	1087
52	19316	14330	15570	2667	13	2423	284·2	2365	1078
51	18147	12860	14845	2511	12	2222	239 ^{.7}	2173	1069
50	17103	11593	14174	2381	11	2024	199 [.] 4	1983	1061
49	16162	10491	13550	2266	10	1829	163 [.] 2	1796	1054
48	15306	9523	12966	2165	9	1636	131.0	1610	1046
47	14522	8667	12419	2075	8	1447	102.6	1426	1040
46	13799	7905	11903	1995	7	1259	77.9	1243	1033
45	13130	7224	11415	1923	6	1074	56·8	1062	1027
44	12506	6611	10953	1858	5	891	39·2	883	1022
43	11924	6058	10513	1798	4	709	24·9	704	1017
42 41 40	11377 10862 10375	5557 5101 4685	10094 9694 9310	1743 1693 1647	3 2 + 1 0	530 352 175 0	13.9 6.2 1.5 0	527 351 175 0	1012 1008 1004 1000
39	9914	4305	8943	1604	- I	174	1.5	174	997
38	9476	3957	8590	1564	2	347	6.0	348	994
37	9059	3637	8249	1527	3	519	13.5	521	991
36	8661	3342	7922	1493	4	690	24 ^{.0}	694	989
35	8281	307 I	7605	1461	5	860	37 [.] 4	867	987
34	7916	2820	7299	1431	6	1029	53 [.] 7	1040	985
33	7566	2588	7002	1402	7	1199	73 ^{.0}	1213	984
32	7229	2374	6715	1376	8	1367	95 ^{.2}	1386	983
31	6905	2175	6436	1351	9	1536	120.4	1560	982

1 3 4	continuor	A
IX.	continued	

		λ=0:2	20				λ=0*:	20	
φ	(x)	(y)	(<i>t</i>)	(v)	φ	(x)	(y)	(1)	(v)
10 [°]	1704	148.5	1733	981	46°	8567	4149	9404	1184
11	1872	179.6	1908	981	47	8814	4410	9705	1197
12	2040	213.8	2082	981	48	9067	4686	10017	1211
13	2208	251°1	2258	982	49	9326	4979	10337	1225
14	2376	291°5	2434	982	50	9591	5289	10669	1240
15	2544	335°1	2611	983	51	9863	5619	11011	1256
16	2713	382.0	2789	985	52	10142	5970	11366	1273
17	2883	432.2	2969	986	53	10429	6344	11733	1290
18	3053	485.8	3149	988	54	10723	6741	12114	1307
19	3224	543°0	3331	990	55	1 1026	7166	12510	1326
20	3395	603°8	3515	993	56	1 1 3 3 7	7619	12921	1345
21	3568	668°3	3700	996	57	1 1 6 5 7	8103	13350	1365
22	3741	736.7	3887	999	58	11988	8621	13797	1 386
23	3916	809.0	4076	1002	59	12328	9177	14263	1408
24	4092	885.6	4267	1006	60	12679	9774	14751	1430
25	4269	966°4	4461	1010	61	1 3042	10415	15263	1453
26	4448	1052	4656	1015	62	1 3417	11105	15799	1477
27	4629	1142	4855	1019	63	1 3804	11849	16362	1502
28	4811	1237	5056	1024	64	14205	12653	16954	1528
29	4995	1337	5260	1030	65	14619	13523	17579	1555
30	5181	1442	5467	1036	66	15049	14465	18240	1582
31	5370	1553	5677	1042	67	15494	15489	18939	161 1
32	5560	1670	5891	1048	68	15955	16602	19680	1640
33	5753	1793	6109	1055	69	16433	17817	20469	1670
34	5949	1922	6330	1062	70 [.]	16929	19144	21309	1701
35	6147	2059	6556	1070	71	17443	20597	22207	1733
36	6349	2202	6786	1078	72 [.]	17977	22194	23169	1765
37	6553	2353	7021	1087	73	18531	23952	24204	1798
38	6761	2513	7261	1096	74	19106	25894	25319	1832
39	6972	2681	7507	1105	75	19703	28046	26527	1866
40	7187	2858	7758	1115	76	20321	30439	27840	1900
41	7406	3045	8015	1125	77	20963	33111	29274	1934
42	7629	3242	8278	1136	78	21627	36109	30848	1967
43 44 45	7856 8088 8324	3450 3671 3903	8548 8826 9111	1147 1159 1171	79 80	22314 23024	39490 43326	32586 34520	2001 2034

IX. (continued).

		$\lambda = 0.2$	2.2				$\lambda = 0.5$	24	
φ	(.x)	(y)	(1)	(v)	φ	(x)	(y)	(<i>t</i>)	(v)
58°	41310	46280	23968	7654	55°	30686	28787	20101	4923
57 1	39006	42610	23372	6910	54 3	29679	27355	19736	4691
57 <u>1</u>	37096	39596	22833	6344	54 3	28760	26061	19390	4489
57 1	35465	37049	22338	5895	54 1	27917	24884	19061	4309
57	34044	34850	21879	5528	54	27137	23806	18746	4148
563	32786	32921	21451	5220	53 1	26412	22813	18445	4004
56 1	31657	31208	21047	4956	53 ¹ / ₂	25736	21895	18155	3872
56 1	30635	29671	20666	4728	53 ¹ / ₄	25102	21042	17876	3753
56	29701	28280	20304	4528	53	24506	20246	17607	3643
55 ⁸	28842	27012	19959	4349	52	22423	17530	16617	3280
55 ¹ / ₂	28047	25850	19629	4190	51	20705	15369	15738	3003
55 ¹ / ₄	27308	24778	19313	4046	50	19247	13600	14945	2783
55	26617	23787	19009	3915	49	17984	12120	14222	2602
54	24235	20446	17899	3491	48	16871	10861	13556	2451
53	22304	17833	16923	3174	47	15879	9778	12940	2321
52	20684	15721	16050	2926	46	14984	8835	12366	2209
51	19292	13971	15258	2726	45	14171	8007	11829	2110
50	18076	12495	14534	2558	44	13426	7274	11323	2023
49 48 47	16997 16030 15154	11231 10137 9181	13866 13245 12667	2417 2295 2188	43 42 41 40	12739 12102 11510 10955	6623 6039 5515 5041	10846 10394 9964 9555	1945 1875 1812 1754
46 45 44	14354 13620 12941	8338 7591 6923	12124 11613 11131	2094 2010 1935			$\lambda = 0.5$		
43 42 41 40	12311 11722 11171 10653	6325 5786 5298 4855	10673 10239 9825 9429	1867 1806 1749 1698	φ	(x)	(y)	(1)	(v)
		λ=0:2	24		- 40° 41 42	6952 7157 7365	2733 2908 3092	7627 7876 8130	1079 1088 1097
\$	(x)	(y)	(<i>t</i>)	(v)	43 44 45	7577 7792 8012	3286 3491 3707	8391 8658 8933	1106 1117 1127
561°	40352	43045	22908	7735	46	8236	3935	9215	1138
561	38012	39526	22331	6944	47	8465	4176	9505	1150
56	36090	36663	21812	6351	48	8698	4430	9804	1162
55 ²	34461	34258	21337	5885	49	8936	4700	10112	1174
55 ¹	33048	32193	20897	5507	50	9179	4985	10429	1188
55 ¹	31801	30387	20486	5192	51	9428	5287	10757	1201

IX. (continued).

		$\lambda = 0$	2 5				λ=0.3	26	
ø	(x)	(y)	(1)	(v)	ø	(x)	(y)	(<i>t</i>)	(v)
52° 53 54	9683 9944 10211	5607 5947 6308	11095 11446 11809	1215 1230 1245	$53\frac{1}{2}^{\circ}$ 53 $\frac{1}{4}$ 53	29540 . 28567 27681	26330 25022 23841	19156 18811 18483	4836 4609 4409
55 56 57	10485 10767 11055	6693 7102 7538	12186 12577 12984	1261 1278 1295	$52\frac{3}{4} \\ 52\frac{1}{2} \\ 52\frac{1}{4} \\ 52\frac{1}{4} \\ $	26867 26115 25415	22765 21780 20873	18171 17873 17586	4233 4075 3933
58 59 60	11352 11657 11970	8004 8501 9034	1 3407 1 3849 1 43 1 0	1312 1331 1350	$52 \\ 51\frac{3}{4} \\ 51\frac{1}{2}$	24762 24150 23575	20033 19253 18526	17312 17047 16792	3805 3687 3580
61 62 63	12293 12625 12967	9604 10216 10874	14792 15296 15826	1370 1390 1411	51 ¹ / ₄ 51 50	23031 22517 20698	17846 17208 14999	16545 16306 15421	3480 3388 3080
64 65 66	13320 13684 14059	11581 12344 13168	16382 16967 17585	1433 1455 1478	49 48 47	19173 17864 16719	13213 11733 10483	14626 13905 13244	2839 2644 2482
67 68 69	14447 14846 15259	14059 15024 16073	18237 18927 19660	1501 1526 1551	46 45 44	15703 14792 13966	9412 8484 7673	12632 12063 11531	2345 2227 2125
70 71 72	15686 16126 16582	17214 18459 19820	20439 21270 22159	1576 1602 1628	43 42 41 40	13212 12519 11878 11282	6957 6322 5754 5245	11031 10559 10112 9688	2034 1953 1881 1816
73 74 75	17052 17538 18039	21312 22953 24763	23112 24137 25245	1655 1682 1709			$\lambda = 0.5$		
76 77 78 79 80	18557 19091 19642 20210 20794	26766 28993 31480 34272 37426	26446 27755 29189 30769 32522	1736 1763 1790 1816 1842	φ	(x)	(<i>y</i>)	(<i>t</i>	(v)
-		λ=0.3	26		$53\frac{1}{2}^{\circ}$ $53\frac{1}{4}$ 53	36958 34872 33147	35386 32580 30279	20700 20194 19737	7288 6570 6026
φ	(x)	(y)	(t)	(v)	52 <u>3</u> 52 <u>3</u> 52 <u>3</u> 52 <u>4</u>	31677 30397 29264	28336 26660 25190	19318 18928 18564	5597 5246 4952
$55^{\circ} \\ 54\frac{9}{4} \\ 54\frac{1}{2}$	38874 36612 34756	39352 36137 33522	21813 21268 20776	7608 6825 6241	$52 \\ 51\frac{3}{4} \\ 51\frac{1}{2}$	28248 27329 26489	23885 22713 21652	18221 17897 17589	4701 4484 4294
54‡ 54 53 [‡]	33183 31819 30615	31326 29439 27791	20326 19910 19522	5783 5410 5100	51 <u>‡</u> 51 50 ³	25716 25001 24336	20685 19798 18980	17294 17013 16743	4125 3974 3838

IX. (continued).

		$\lambda = 0$	28				λ=0.	30	
ø	(x)	(y)	(<i>t</i>)	(7')	φ	(x)	()	(<i>t</i>)	(2')
50 ¹⁰	23714	18222	16483	3714	39°	11388	5187	9546	1886
501	23130	17518	16233	3601	38	10789	4710	9133	1818
50	22581	16860	15992	3497	37	10232	4283	8740	1757
49	20659	14608	15100	3154	36	9711	3897	8365	1701
48	19069	12810	14305	2891	35	9221	3547	8005	1650
47	17716	11333	13586	2682	34	8760	3231	7661	1603
46	16542	10095	12928	2510	33	8324	2942	7330	1560
45	15506	9040	12322	2366	32	7910	2678	7012	1520
44	14580	8129	11758	2243	31	7516	2437	6704	1483
43 42 41 40	13744 12983 12284 11640	7336 6638 6021 5470	11232 10737 10271 9830	2136 2042 1960 1885	30 29 28	7141 6783 6440	2216 2013 1827	6407 6120 5842	1449 1417 1387
		λ=0.			27 26 25	6111 5795 5490	1656 1498 1352	5571 5309 5053	1359 1333 1309
φ	(x)	(y)	(1)	(v)	2.4 23 22	5196 4912 4638	1219 1095 981-3	4805 4562 4325	1286 1265 1244
52°	34743	31376	19582	6836	21	4371	876 ·4	4093	1225
51 8	32892	29018	19122	6213	20	4113	779 ·9	3866	1207
51 8	31340	27057	18702	5732	19	3862	691 ·0	3644	1190
51	30003	25384	18316	5347	18	3618	609 · 4	3427	1174
51	28831	23930	17955	5028	17	3381	534·5	3213	1159
50 ³	27787	22647	17617	4759	16	3149	465·9	3003	1145
501	26847	21501	17298	4528	15	2923	403 ^{.2}	2797	1131
501	25993	20469	16995	4327	14	2702	346 ^{.0}	2595	1119
50	25210	19532	16707	4149	13	2486	294 ^{.2}	2395	1107
49 ³ 49 ¹ 49 ¹ 49 ¹	24487 23817 23192	18675 17886 17158	16431 16167 15914	3993 3850 3721	12 11 10	2275 2068 1864	247°3 205°1 167°4	2198 2004 1813	1095 1084 1074
49	22607	16482	15670	3605	9	1665	134.0	1623	1065
48	20582	14191	14773	3224	8	1469	94.7	1436	1055
47	18930	12386	13978	2940	7	1276	79.3	1251	1047
46	17537	10918	13262	2716	6	1086	57 ^{.7}	1068	1039
45	16337	9696	12609	2535	5	899	39 ^{.7}	887	1031
44	15283	8660	12008	2384	4	714	25 ^{.2}	707	1024
43 42 41	14345 13501 12735	7770 6996 6318	1 1450 10929 10441	2255 2144 2048	3 2 + 1 0	533 353 176 0	14.0 6.2 1.5 0	528 351 175 0	1017 1011 1006 1000
40	12034	5719	9981	1962	1				

IX. (continued).

		$\lambda = 0.3$	30				$\lambda = 0.3$,0	
ø	(x)	(יر)	(1)	(v)	φ	(x)	(y)	(t)	(v)
- 1°	174	1.5	174	995	40°	6737	2620	7504	1046
2	346	6.0	347	990	41	6930	2784	7745	1054
3	516	13.5	520	986	42	7125	2957	7991	1062
4	685	23.8	692	982	43	7323	3139	8244	1070
5	853	37.0	864	978	44	7525	3330	8502	1079
6	1019	53.0	1035	975	45	7730	3531	8768	1083
7	1185	71.9	1206	972	46	7938	3744	9040	1098
8	1349	93.5	1377	970	47	8151	3967	9319	1108
9	1513	118.0	1548	967	48	8367	4203	9607	1119
10	1676	145 [.] 3	1719	965	49	8588	4453	9903	1129
11	1839	175 [.] 4	1890	964	50	8813	4716	10208	1141
12	2000	208 [.] 3	2061	962	51	9042	4995	10523	1153
13	2162	244°I	2233	961	52	9276	5289	10848	1165
14	2323	282°8	2406	961	53	9516	5601	11184	1178
15	2484	324°4	2579	960	54	9761	5932	11531	1191
16	2645	369°0	2753	960	55	10011	6284	11892	1205
17	2805	416°7	2928	960	56	10268	6657	12265	1219
18	2966	467°4	3103	961	57	10530	7054	12653	1234
19 20 21	3127 3289 3451	521·3 578·5 639·0	3280 3458 3638	961 962 963	58 59 60 61	10800 11076 11359 11649	7477 7927 8408 8921	13057 13477 13915 14372	1250 1265 1282 1299
22	3613	702 · 9	3819	965	62	11948	9471	14850	1316
23	3776	770·4	4001	967	63	12254	10060	15351	1334
24	3940	841·5	4186	969	64	12569	10692	15877	1353
25	4104	916·4	4372	972	65	12893	11372	16429	1372
26	4269	995·2	4560	974	66	13227	12103	17011	1392
27	4435	1078	4750	977	67	13569	12892	17625	1412
28	4603	1165	4943	981	68	13923	13744	18274	1432
29	477 I	1257	5138	984	69	14286	14667	18961	1453
30	494 I	1353	5336	988	70	14660	15668	19691	1475
31 32 33	5112 5285 5459	1454 1560 1671	5537 5740 5947	993 997 1002	71 72 73	15045 15442 15850	16756 17942 19238	20468 21297 22185	1497 1519 1541 1563
34 35 36	5636 5814 5994	1787 1910 2038	6158 6371 6589	1007 1013 1019	74 75 76 77	16271 16704 17149 17607	20658 22220 23943 25852	23139 24168 25282 26494	1503 1586 1609 1631
37 38 39	6176 6361 6548	2173 2315 2464 .	6811 7037 7268	1025 1032 1039	77 78 79 80	18078 18561 19057	27976 30354 33032	27819 29277 30893	1653 1675 1696

IX. (continued).

	1	$\lambda = 0.3$	32				λ=0.3	34	
φ	(<i>x</i>)	(y)	(<i>t</i>)	(v)	φ	(x)	(y)	(1)	(v)
50 ¹ 0	32378	27524	18478	6317	48 <u>1</u> °	27459	21075	16691	5030
501	30781	25595	18064	5800	48 <u>1</u>	26418	19904	16370	4745
50	29418	23963	17683	5391	48	25486	18864	16068	4503
49 ³ 49 ³ 49 ¹ / ₂ 49 ¹ / ₂	28229 27176 26232	22552 21314 20213	17330 16999 16688	5055 4775 4535	47 ⁸ 47 ¹ 47 ¹ 47 ¹	24642 23872 23164	17931 17087 16318	15782 15510 15251	4294 4111 3948
49	25376	19224	16392	4327	47	22509	15612	15002	3803
48 3	24594	18328	16111	4145	46 <u>3</u>	21900	14962	14764	3673
48 <u>1</u>	23873	17510	15843	3983	46 <u>1</u>	21330	14359	14534	3554
48 1	23206	16760	15586	3838	46‡	20796	13798	14313	3446
48	22586	16067	15340	3708	46	20293	13275	14099	3347
47 2	22005	15425	15103	3589	45	18533	11482	13308	3019
47 ¹ / ₂	21460	14828	14874	3481	44	17076	10050	12601	2768
47 ¹ / ₄	20947	14270	14653	3381	43	15836	8873	11960	2569
47	20461	13747	14439	3289	42	14758	7884	11372	2406
46	18752	11944	13646	2983	41	13806	7042	10828	2268 [°]
45	17324	10491	12933	2745	40	12954	6315	10321	2151
44	16101	9289	12286	2554	39	12185	5680	9846	2050,
43	15033	8275	11691	2397	38	1 1484	5122	9399	1961
42	14087	7407	11139	2264	37	10840	4628	8976	1882
41	13238	6656	10625	2150	36	10244	4187	8575	1812
40	12469	5999	10144	2050	35	9692	3793	8194	1749
39	11766	5420	9690	1963	34	9175	3438	7829	1691
38	11120	4906	9261	1886	33	8692	3118	7481	1639
37	10523	4447	8854	1816	32	8236	2827	7147	1592
36	9967	4036	8466	1754	31	7806	2564	6825	1548
35	9448	3665	8096	1697	30	7399	2324	6516	1508
34 33 32 31 30	8961 8502 8068 7657 7267	3330 3027 2750 2499 2269	7743 7403 7077 6763 6460	1645 1598 1555 1514 1477			λ=0.3	35	
		$\lambda = 0$			φ	(.x)	(y)	(1)	(v)
φ	(x)	(1)	(<i>t</i>)	(v)	- 40° 41 42	6539 6720 6904	2516 2671 2834	7389 7623 7862	 1016 1023 1030
491°	31586	25808	17806	6321	43	7091	3005	8107	1037
49	29992	23965	17404	5789	44	7280	3184	8357	1045
483	28636	22412	17034	5370	45	7472	3373	8614	1053

)	v = 0.3	5				N=0.3	;6	
φ	(<i>x</i>)	(y)	(<i>t</i>)	(v)	φ	(<i>x</i>)	(y)	(<i>t</i>)	<i>(v)</i>
46° 47 48	7667 7865 8067	3572 3781 4001	8877 9148 9425	1062 1070 1080	48° 47 ³ 47 ³ 47 ³	30527 28984 27672	23909 22203 20764	17111 16724 16369	6217 5695 5285
49 50 51	8272 8481 8694	4233 4478 4736	9711 10005 10308	1089 1099 1110	47 1 47 46 <u>3</u>	26532 25523 24620	19525 18439 17475	16040 15731 15441	4950 467 I 4433
52 53 54	8911 9133 93 5 9	5009 5297 5603	10621 10944 11278	1121 1132 1144	46 <u>1</u> 46 <u>1</u> 46 <u>1</u> 46	23803 23056 22370	16609 15826 15112	15166 14905 14655	4228 4048 3888
55 56 57	9589 9825 10066	5926 6269 6633	11623 11981 12353	1156 1168 1181	45 ⁸ 45 ¹ / ₂ 45 ¹ / ₂	21735 21144 20591	14457 13853 13293	14416 14186 13965	3746 3617 3501
58 59 60	10312 10564 10822	7020 7432 7870	12739 13140 13559	1195 1209 1223	45 44 43	20073 18271 16792	12773 11001 9597	13752 12966 12266	3394 3047 2784
61 62 63	11087 11358 11635	8337 8836 9369	13995 14451 14927	1238 1253 1269	42 41 40	15541 14457 13504	8449 7490 6676	11632 11051 10515	2578 2409 2269
64 65 66	11920 12212 12512	9940 10553 11211	15427 15951 16503	1285 1302 1319	39 38 37	12653 11885 11187	5974 5363 4827	10015 9548 9108	2149 2046 1956
67 68 69	12819 13135 13459	11918 12681 13505	17084 17698 18347	1336 1354 1372	36 35 34	10547 9956 9407	4353 3931 3554	8692 8297 7922	1876 1805 1742
70 71 72	13793 14135 14486	14396 15363 16414	19036 19768 20549	1391 1410 1429	33 32 31 30	8895 8416 7965 7539	3215 2910 2634 2383	7563 7220 6891 6575	1684 1632 1584 1540
73 74 75	14847 15218 15599	17559 18811 20185	21384 22280 23245	1448 1467 1486	-		λ=0;	38	
76 77 78	15989 16390 16801	21696 23366 25221	24289 25422 26660	1506 1525 1544	φ	(x)	(y)	(t)	(v)
79 80	17222 17653	27291 29618	28020 29525	1562 1580	47° 463 461 461	30981 29236 27787	23758 21894 20360	16798 16395 16029	6660 6016 5527
					46 <u>1</u> 46 45 ³ 45 ³	26549 25468 24510	19060 17937 16949	15692 15379 15085	5139 4821 4555

IX. (continued).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							λ=0.	10	
φ	(x)	(y)	<i>(t)</i>	(v)	φ	()	(y)	(1)	(v)
451	22871	15280	14546	4328 4131 3958	42 ⁸⁰ 42 ¹ 42 ¹ 42 ¹ 42 ¹	18955 18481 18034	11211 10775 10367	12829 12633 12444	3345 3247 3157
4412	20892	13309	13828	3804 3667 3543	42 41 40	17611 16114 14859	9984 8659 7586	12261 11578 10963	3074 2794 2577
43	17963	10501	12617	3430 3065 2793	39 38 37	13780 12834 11994	6696 5944 5299	10401 9882 9399	2402 2257 2134
40	14130	7094	10728	2580 2408 2265	36 35 34	11238 10552 9924	4740 4250 3819	8947 8522 8120	2029 1938 1857
37	11569	5049	9248	2144 2039 1948	33 32 31	9346 8810 8310	3435 3094 2787	7739 7377 7030	1785 1721 1664
34	9655	3681	So19	1868 1797 1732	30 29 28	7842 7403 6988	2512 2263 2038	6699 6380 6074	1611 1564 1520
31	8132	2708	6960	1675 1622 1574	27 26 25	6596 6223 5869	1834 1648 1479	5779 5494 5219	1480 1443 1408
		λ=0.4	ho		24 23 22	5530 5207 4897	1324 1184 1055	4952 4693 4441	1377 1347 1319
φ 	(.x)	(y)	(1)	(v)	21 20 19	4599 4312 4036	937·8 830·6 732·8	4196 3957 3724	1294 1270 1247
46° 45 ³ 45 ¹ 45 ¹	31301 29352 27773 26446	23464 21454 19840 18496	16461 16042 15667 15325	7091 6312 5741 5300	18 17 16	3769 3511 3261	643 ^{.5} 562 ^{.1} 488 ^{.0}	3496 3274 3056	1226 1206 1188
45 443 444	25304 24300 23406	17348 16349 15466	15008 14713 14436	4945 4653 4406	15 14 13	3019 2783 2554	420·8 359·9 304·9	2842 2633 2427	1170 1153 1138
441 44 433	22600 21867 21194	14678 13966 13320	14173 13924 13686	4194 4009 3846	12 11 10	2331 2114 1901	255 [.] 5 211 [.] 2 171 [.] 9	2225 2026 1831	1123 1109 1096
431 431 43	20573 19997 19459	12728 12183 11679	13459 13241 13031	3701 3570 3453	9 8 7	1694 1491 1293	137·2 106·9 80·7	1638 1447 1260	1084 1072 1061

		$\lambda = 0.7$	to				λ=0.7	to	
φ	(x)	(y)	(1)	(v)	φ	(x)	(y)	(1)	(v)
6°	1098	58·5	1074	1051	34°	5362	1672	6002	960
5	907	40·2	891	1041	35	5524	1783	6206	964
4	720	25·4	709	1033	36	5687	1899	6413	968
3 2 I 0	536 354 176 0	14·1 6·2 1·5	530 352 175 0	1023 1015 1007 1000	37 38 39	5851 6017 6185	2021 2148 2282	6623 6838 7057	973 978 983
I	173	1.2	174	993	40	6355	2422	7280	989
2	344	6.0	347	987	41	6526	2568	7508	995
3	513	13.4	519	981	42	6700	2722	7740	1001
4	681	23.6	690	975	43	6876	2883	7978	1007
5	846	36.6	861	970	44	7054	3052	8221	1014
6	1009	52.3	1030	966	45	7235	3230	8470	1021
7	1171	70 ^{.8}	1200	961	46	7418	3416	8725	1029
8	1332	91.9	1368	958	47	7604	3613	8987	1036
9	1491	115.7	1537	954	48	7793	3819	9256	1045
10	1649	142°2	1705	950	49	7985	4036	9532	1053
11	1806	171°3	1874	947	50	8180	4264	9816	1062
12	1963	203°1	2042	945	51	8378	4505	10109	1071
13	2118	237 ^{.5}	2211	942	52	8581	4759	10411	1081
14	2273	274 ^{.6}	2380	940	53	8786	5028	10722	1091
15	2427	314 ^{.5}	2549	938	54	8996	5311	11044	1101
16	2580	357°0	2719	937	55	9210	5611	11376	1112
17	2733	402°4	2890	936	56	9428	5928	11721	1123
18	2886	450°5	3061	935	57	9650	6264	12078	1135
19	3038	501·5	3233	935	58	9877	6621	12448	1147
20	3191	555·5	3406	934	59	10109	7000	12834	1159
21	3343	612·5	3580	934	60	10347	7402	13235	1172
22	3495	672 [.] 5	3755	935	61	10589	7831	13652	1185
23	3648	735 [.] 7	3932	935	62	10837	8287	14088	1199
24	3800	802 [.] 1	4110	936	63	11091	8775	14544	1213
25	3954	871.9	4289	937	64	11350	9296	15021	12 ^ 7
26	4107	945.1	4471	939	65	11616	9853	15522	1242
27	4261	1022	4654	940	66	11888	10451	16047	1256
28	4416	1102	4839	942	67	12167	11092	16601	1272
29	4571	1187	5027	945	68	12453	11783	17185	1288
30	4728	1275	5216	947	69	12746	12527	17802	1304
31	4885	1 368	5409	950	70	1 3046	13330	18456	1320
32	5043	1464	5603	953	71	1 3354	14200	19150	1336
33	5202	1 566	5801	957	72	1 3670	15143	19890	1353

)	N=0'4	.0		-	2	$\lambda = 0^{\cdot}4$	4	
φ	(<i>x</i>)	(y)	(1)	(v)	φ	(x)	(y)	(1)	(v)
73° 74 75	13993 14325 14665	16169 17289 18514	20681 21528 22439	1372 1387 1403	43 ¹ ° 43 ¹ 43	27235 25799 24585	18385 17027 15890	14871 14526 14211	6008 5485 5077
76 77 78	15012 15369 15733	19861 21345 22991	23424 24493 25659	1420 1437 1453	42 ³ 42 ¹ 42 ¹ 42 ¹ 42 ¹	23534 22608 21780	14914 14062 13307	13919 13646 13389	4747 4474 4241
79 80	16106 16487	24824 26881	26939 28355	1469 1485	42 41 ³ 41 ¹ / ₂	21033 20351 19725	1 2631 1 2020 1 1463	13145 12913 1 2 692	4041 3867 3712
	2	λ=0.4	41 ¹ / ₄ 19146 10953 1 41 18608 10483 1				12481 12277 12081	3575 3451 3339	
φ	(x)	(y)	(1)	(v)	40½ 40¼ 40	17633 17190 16771	9644 9267 8913	11892 11710 11533	3237 3143 3057
44 ¹ / ₂ ° 44 ¹ / ₄ 44	27597 26202 25012	19185 17820 16666	15282 14937 14620	5908 5419 5034	39 38 37	15295 14064 13009	7696 6716 5906	10875 10283 9742	2770 2549 2372
43 ⁸ 43 ¹ / ₂ 43 ¹ / ₄	23977 23059 22237	15670 14796 14019	14325 14048 13788	4719 4456 4232	36 35	12088 11270	5224 4641	9243 8779	2227 2104
43 42 ⁸ 42 ¹ / ₂	21492 20811 20184	13320 12688 12111	13541 13305 13081	4037 3867 3716	34 33 32	10536 9871 9263	4137 3696 3308	8345 7937 7550 7183	1999 1908 1828
42‡ 42 41	19603 19062 17212	11581 11092 9454	12865 12658 11900	3581 3460 3071	31 30	8702 8183	2965 2659	7183 6834	1757 1693
40	15721 14474	8179	11229	2786 2566			$\lambda = 0.7$	15	
39 38	1 3405	6300	10073	2390	φ	(<i>x</i>)	(y)	(1)	(v)
37 36 35	12469 11639 10893	5582 4967 4435	9563 9090 8646	2244 2121 2016	- 40°	6184			
34 33 32	10217 9598 9028	3970 3560 3197	8229 7835 7461	1924 1844 1772	40 41 42	6347 6511	2335 2474 2620	7177 7399 7625	963 968 974
31 30	8499 8007	2873 2583	7105 6765	1708 1651	43 44 45	6678 6846 7017	2772 2932 3100	7856 8093 8335	980 986 992

IX. (continued).

IX. (continued).

	2	\ =0'4	5			2	$\lambda = 0.4$	ļ6	
φ	(<i>x</i>)	(y)	<i>(t)</i>	(v)	φ	(x)	(<i>y</i>)	(<i>t</i>)	(v)
46°	7190	3276	8582	998	$42\frac{1}{2}^{\circ} \\ 42\frac{1}{4} \\ 42$	26673	17443	14432	6027
47	7365	3460	8837	1005		25232	16127	14093	5488
48	7543	3654	9097	1013		24019	15031	13783	5070
49	7723	3858	9365	1020	$4I\frac{3}{4}$ $4I\frac{1}{2}$ $4I\frac{1}{4}$	22973	14092	1 3496	4734
50	7906	4072	9640	1028		22053	13275	1 32 28	4456
51	8092	4298	9924	1037		21232	12552	1 2976	4222
52	8281	4536	10215	1045	41	20492	11906	12737	4019
53	8473	4786	10516	1054	40 ³	19818	11323	12510	3844
54	8669	5051	10827	1063	40 ¹ / ₂	19200	10792	12294	3688
55	8868	5330	11148	1073	40 1	18629	10306	12087	3550
56	9071	5625	11480	1083	40	18098	9859	11888	3426
57	9278	5937	11825	1093	39 3	17603	9445	11696	3314
58	9489	6268	12182	1104	39 ¹ / ₂	17139	9061	11511	3211
59	9703	6619	12552	1115	39 ¹ / ₃	16702	8703	11333	3118
60	9923	6991	12938	1127	39	16290	8367	11160	3032
61	10147	7387	13339	1138	38	14839	7213	10517	2745
62	10375	7808	13758	1150	37	13630	6284	9938	2526
63	10609	8257	14195	1163	36	12595	5518	9409	2350
64	10847	8735	14653	1176	35	11691	4873	8922	2205
65	11091	9247	15132	1189	34	10890	4322	8468	2083
66	11341	9795	15635	1202	33	10170	3846	8043	1979
67	11596	10382	16165	1216	32	9518	3430	7643	1889
68	11857	11012	16723	1230	31	8921	3064	7264	1810
69	12124	11690	17312	1244	30	8372	2741	6905	1739
70 71 72	12397 12677 12963	12422 13212 14068	17936 18598 19302	1259 1273 1288			λ=0'4	18	
73 74 75	13256 13556 13863	14997 16010 17116	20055 20860 21726	1 303 1 318 1 333	φ	(x)	(y)	(t)	(v)
76	14176	18329	22661	1348	41 ¹⁰	25913	16376	13970	5959
77	14497	19666	23675	1363	41 ¹	24504	15135	13639	5425
78	14825	21144	24781	1377	41	23319	14100	13337	5011
79 80	15159 15500	22790 24633	25993 27334	1391 1405	40 ³ 40 ¹ 40 ¹ 40 ¹	22296 21398 20597	13216 12445 11763	13058 12797 12552	4679 4403 4171

T 37	/ . • 7\	
IX ((continued)	1
1	<i>conconnea</i>	1.

		λ=0.	48				$\lambda = 0.3$	5	
φ	(x)	(5)	(1)	(v)	φ	(<i>x</i>)	(<i>y</i>)	(<i>t</i>)	(v)
40° 39 ³ 39 ¹ / ₂	19874 19216 18613	11154 10605 10105	12320 12099 11888	3972 3798 3644	363° 36½ 36¼	14849 14498 14163	6999 6738 6492	10246 10092 9942	2873 2801 2735
39 1 39 38 <u>3</u>	18055 17537 17053	9647 9226 8836	11686 11493 11306	3508 3385 3274	36 35 34	13844 12698 11715	6259 5441 4765	9796 9246 8744	2673 2460 2290
38 <u>1</u> 38 <u>1</u> 38 <u>1</u> 38	16600 16174 15771	8474 8136 7820	11126 10952 10784	3173 3081 2996	33 32 31	10856 10093 9408	4196 3710 3290	8280 7847 7442	2150 2033 1932
37 36 35	14355 13174 12163	6733 5859 5137	10157 9592 9077	2713 2496 2322	30 29 28	8787 8218 7694	2924 2602 2318	7059 6697 6353	1844 1767 1699
34 33 32	11280 10497 9794	4530 4012 3563	8600 8157 7742	2180 2060 1957	27 26 25	7208 6756 6332	2065 1839 1636	6025 5711 5410	1638 1584 1534
31 30	9156 8573	3173 2829	7350 6980	1868 1790	24 23 22	5933 5557 5200	1455 1291 1144	5120 4840 4570	1489 1448 1410
		λ=0;	5		21 20 19	4862 4540 4232	1010 889·8 780·9	4309 4056 3810	1375 1343 1313
\$ 	(x)	(y')	(t)	(v)	18 17 16	3938 3656 3384	682·3 593·3 512·8	3571 3338 3111	1285 1259 1235
$ \begin{array}{r} 41^{\circ} \\ 40^{3}_{4} \\ 40^{1}_{2} \\ 40^{1}_{4} \\ 40 \end{array} $	28738 26617 24972 23630 22497	18464 16628 15217 14076 13120	14241 13839 13486 13169 12878	7506 6499 5810 5301 4904	15 14 13	3123 2870 2627	440°3 375°1 316°6	2890 2673 2461	1213 1192 1172
39 ³ 39 ¹ / ₂ 39 ¹ / ₂	21517 20654 19883	12302 11587 10954	12609 12357 12119	4584 4319 4094	I2 II I0	2391 2162 1940	264·3 217·8 176·6	2253 2049 1849	1153 1136 1120
39 383 381	19186 18552 17969	10387 9876 9410	11895 11681 11477	3900 3731 3582	9 8 7	1725 1515 1310	140°5 109°1 82°2	1652 1459 1268	1 104 1090 1076
38 1 38 37 1	17430 16929 16461	8983 8590 8226	11281 11093 10912	3449 3330 3221	6 5 4	1111 916 725	59 ^{.5} 40 ^{.7} 25 ^{.7}	1080 895 712	1063 1051 1040
371 371 371 37	16022 15609 15219	7888 7572 7277	10737 10568 10405	3123 3033 2949	3 2 1 0	538 356 176 0	14°2 6°2 1°5 0	531 352 175 0	1029 1019 1009 1000

		$\lambda = 0$	5				$\lambda = 0.5$	5	
φ	(x)	(y)	(1)	(v)	φ	(x)	(y)	(1)	(v)
1°	173	1.2	174	992	40°	6024	2254	7079	940
2	343	6.0	346	984	41	6179	2386	7295	944
3	511	13.3	517	976	42	6335	2525	7516	949
4	676	23*4	688	969	43	6493	2669	7741	954
5	839	36*2	857	963	44	6653	2821	7971	959
6	1000	51*6	1025	956	45	6814	2980	8207	965
7	1158	.69°7	1192	95 I	46	6978	3146	8448	971
8	1315	90°4	1359	945	47	7143	3321	8695	977
9	1470	113°6	1526	940	48	7311	3504	8948	984
10	1624	139'3	1692	936	49	7481	3696	9208	990
11	1776	167'5	1857	932	50	7653	3898	9475	998
12	1927	198'2	2023	928	51	7828	4110	9750	1005
13	2077	231·3	2189	924	52	8006	4333	10033	1013
14	2225	267·0	2354	921	53	8186	4569	10324	1021
15	2373	305·2	2520	918	54	8370	4816	10625	1029
16	2520	345 [.] 9	2686	916	55	8556	5078	10936	1038
17	2666	389 [.] 2	2853	913	56	8746	5354	11257	1047
18	2811	435 [.] 0	3020	912	57	8939	5645	11589	1056
19	2956	483·4	3187	910	58	9135	5954	11934	1066
20	3100	534·5	3356	909	59	9335	6280	12292	1076
21	3244	588·3	3525	907	60	9539	6627	12663	1086
22	3388	644 · 9	3695	907	61	9747	6994	13050	1097
23	3531	704·3	3866	906	62	9959	73 ⁸ 5	13453	1108
24	3674	766·6	4039	906	63	10176	7800	13874	1119
25	3818	831 . 9	4213	906	64	10396	8243	14314	1131
26	3961	900.3	4388	907	65	10622	8716	14775	1142
27	4104	971.8	4565	907	66	10852	9221	15258	1155
28	4248	1047	4743	908	67	11087	9762	15767	1167
29	4392	1125	4924	909	68	11327	10342	16302	1179
30	4537	1207	5106	91 I	69	11573	10965	16867	1192
31	4682	1292	5291	912	70	11824	11636	17464	1205
32	4827	1381	5478	914	71	12080	12361	18098	1218
33	4974	1474	5668	917	72	12342	13144	18772	1232
34 35 36	5121 5268 5417	1572 1673 1779	5860 6055 6253	919 922 925	73 74 75	12610 12883 13163	13994 14918 15926	19491 20261 21088 21980	1245 1259 1272 1286
37 38 39	5567 5718 5870	1890 2006 2127	6454 6658 6867	923 928 932 936	76 77 78 79 80	13448 13740 14037 14340 14650	17030 18245 19588 21080 22750	21980 22946 23999 25154 26430	1230 1299 1312 1325 1337

	;	\ =0.2	5			2	λ=0.6	5	
\$	(x)	(y)	(1)	(v)	φ	(x)	(y)	(1)	(v)
38 ¹ / ₂ °	24976	14445	12857	6390	36 ³⁰	26084	14566	12462	7665
38 ¹ / ₄	23391	13190	12522	5698	36 ¹ / ₂	23919	12956	12080	6500
38	22103	12178	12220	5189	36 ¹ / ₂	22295	11760	11749	5740
37 4	21018	11335	1 1945	4795	36	20996	10812	11455	5196
37 <u>1</u>	20082	10613	1 1690	4478	35 ³	19914	10029	11187	4780
37 <u>1</u>	19258	9984	1 145 1	4216	35 ¹ / ₂	18986	9364	10939	4450
37 36 <u>3</u> 36 <u>1</u> 36 <u>1</u>	18524 17861 17257	9428 8931 8482	11227 11014 10812	3995 3804 3638	35 1 35 34 3	18175 17455 16807	8788 8281 7830	10709 10492 10287	4179 3952 3758
36 1 36 35 8 35 8	16703 16191 15715	8074 7700 7356	10619 10434 10256	3492 3361 3244	34½ 34¼ 34	16219 15680 15183	7424 7055 6718	10092 9907 9729	3589 3441 3310
351	15271	7037	10085	3138	33 ³	14723	6409	9558	3192
351	14854	6742	9919	3042	33 ¹ / ₂	14293	6123	9394	3085
35	14462	6466	9759	2954	33 ¹ / ₄	13891	5858	9235	2989
34	13091	5523	9166	2663	33	13512	5611	9082	2901
33	11957	4772	8632	2443	32	12193	4770	8512	2612
32	10991	4156	8145	2268	31	11103	4102	8001	2393
31	10149	3640	7696	2126	30	10176	3556	7534	2220
30	9405	3202	7278	2006	29	9371	3100	7104	2080
29	8739	2824	6886	1905	28	8659	2713	6703	1963
28	8135	2496	6517	1817	27	8021	2381	6326	1863
27	7583	2209	6167	1740	26	7444	2093	5972	1776
26	7076	1956	5834	1672	25	6917	1841	5636	1701
25	6606	1732	5517	1611	24	6431	1620	5316	1634
24	6168	1532	5213	1557	23	5982	1425	5011	1575
23	5759	1354	4922	1507	22	5564	1252	4718	1522
22	5374	1195	4641	1463	21	5173	1097	4437	1474
21	5011	1052	4371	1422	20	4805	959'9	4167	1430
20	4668	923:3	4109	1384	19	4458	837'0	3906	1390
19	4342	807 [.] 8	3856	1350	18	4130	727°1	3653	1 354
18	4031	703 [.] 9	3611	1320	17	3818	628°8	3409	1 320
17	3735	610 [.] 4	3372	1289	16	3521	540°8	3171	1 289
16 15	3451 3179	526·4 450·9	3140 2914	1261 1236	15 14 13	3238 2966 2706	462°1 391°9 329°4	2940 2716 2496	1260 1234 1209

IX. (continued).

IX. (continued).

		λ=0.6	5				$\lambda = 0.0$	5	
¢	(x)	()	(1)	(v)	φ	(x)	(y)	(1)	(v)
12°	2456	273.9	2282	1186	28°	4096	996.7	4654	877
11	2215	224.8	2073	1164	29	4230	1070	4829	877
10	1982	181.7	1868	1144	30	4365	1146	5005	878
9	1757	144°1	1667	1126	31	4499	1225	5183	879
8	1540	111°5	1470	1108	32	4634	1308	5363	880
7	1329	83°7	1277	1091	33	4769	1394	5545	881
6	1124	60°4	1086	1076	34	4905	1484	5729	883
5	924	41°2	899	1061	35	5041	1578	5916	885
4	730	25°9	714	1047	36	5178	1675	6106	887
3 2 1 0	541 357 176 0	14.3 6.3 1.5 0	532 353 175 0	1034 1022 1011 1000	37 38 39	5316 5454 5593	1777 1883 1994	6299 6494 6694	889 892 894
I	173	1.2	174	990	40	5734	2109	6897	898
2	342	5.9	346	980	41	5875	2230	7103	901
3	508	13.2	516	971	42	6017	2356	7314	905
4	672	23·2	685	963	43	6160	2487	7528	909
5	832	35·8	853	955	44	6305	2625	7747	913
6 [.]	990	51·0	1020	947	45	6451	2768	7971	917
7	1 146	68.7	1186	940	46	6 5 99	2918	8200	922
8	1 299	88.9	1351	934	47	6748	3076	8435	927
9	1 450	111.5	1515	928	48	6899	3240	8675	932
IO	1599	136*5	1679	922	49	7051	3413	8921	938
II	1747	163*8	1842	917	50	7206	3593	9174	944
I2	1893	193*5	2005	912	51	7362	3783	9434	950
13	2037	225.5	2167	907	52	7521	3982	9701	956
14	2180	259.8	2330	903	53	7681	4192	9976	963
15	2322	296.5	2493	899	54	7844	4412	10259	970
16	2462	335 ^{.5}	2655	896	55	8009	4643	10552	977
17	2602	376 ^{.8}	2818	893	56	8177	4888	10854	984
18	2741	420 ^{.5}	2981	890	57	8347	5145	11166	992
19	2878	466.6	3144	887	58	8520	5417	11490	1000
20	3015	515.1	3309	885	59	8696	5704	11825	1008
21	3152	566.1	3473	883	60	8875	6008	12174	1016
22	3288	619 [.] 6	3639	881	61	9057	6330	12536	1026
23	3423	675 [.] 7	3805	880	62	9242	6671	12912	1035
24	3558	734 [.] 3	3972	879	63	9431	7033	13305	1044
25	3693	795 ^{.7}	4141	878	64	9623	7418	13715	1054
26	3827	859 [.] 9	4311	878	65	9819	7829	14145	1064
27	3962	926 [.] 8	4482	877	66	10018	8266	14595	1074

В.

T 37	/ ,*	T
1 5 1	continu	Par
	Concenta	ouj.

		λ=0.6	5				$\lambda = 0.6$	55	
ø	(x)	<i>(y)</i>	(<i>t</i>)	(v)	φ	(x)	(y)	(1)	(v)
67° 68 69	10221 10428 10640	8734 9234 9770	15067 15564 16088	1084 1095 1105	27° 26 25	8546 7877 7276	2590 2256 1970	6508 6126 5768	2016 1904 1808
70 71 72	10855 11075 11298	10346 10967 11636	16642 17228 17852	1116 1127 1138	24 23 22	6732 6235 5776	1722 1505 1315	5429 5108 4802	1725 1653 1589
73 74 75	11527 11760 11997	12361 13147 14004	18516 19226 19988	1150 1161 1172	21 20 19	5352 4956 4585	1148 1000 868·8	4509 4228 3959	1532 1481 1434
76 77 78	12239 12486 12737	14940 15968 17102	20809 21698 22666	1183 1194 1205	18 17 16	4237 3908 3596	752°1 648°4 556°0	3699 3447 3204	1392 1354 1319
79 80	12993 13253	18360 19765	23726 24897	1216 1226	15	3300	473'9	2968	1287
		λ=0.6	55		λ=0.2				
φ	(x)	<i>(y)</i>	<i>(t)</i>	(v)	φ	(x)	(y)	(1)	(v)
34 ¹ 2° 34 ¹ 34	21805 20392 19244	10898 9932 9153	11170 10869 10599	6030 5379 4901	$33^{1^{\circ}}_{33}_{32^{\frac{3}{4}}_{32^{\frac{1}{2}}_{2}}}$	24731 22230 20481 19135	12342 10709 9579 8717	11197 10803 10475 10187	8443 6832 5889 5250
33 ³ 33 ¹ 33 ¹ 33 ¹	18276 17441 16705	8504 7948 7463	10352 10122 9908	4530 4231 3985	32 1 32 31 3	18041 17120 16324	8024 7445 6951	9928 9692 9472	4782 4420 4128
33 323 321 321	16049 15457 14917	7035 6652 6307	9706 9514 9332	3776 3597 3440	$31\frac{1}{2}$ $31\frac{1}{2}$ $31\frac{1}{2}$ 31	15625 15000 14437	6520 6139 5799	9267 9074 8891	3887 3683 3508
32] 32 31]	14421 13963 13538	5992 5705 5440	9158 8991 8831	3302 3180 3069	30 ³ 30 ¹ / ₂ 30 ¹ / ₂	13924 13452 13017	5492 5213 4957	8716 8550 8390	3355 3221 3101
311 311 311 31	13140 12767 12416	5195 4968 4756	8676 8527 8382	2969 2879 2796	30 29 3 29 <u>1</u> 29 <u>1</u>	12612 12234 11879	4722 4505 4303	8236 8088 7945	2993 2896 2807
30 29 28	11187 10170 9302	4031 3455 2984	7845 7361 6918	2522 2315 2150	29 1 29 28	11545 11230 10118	4115 3940 3336	7807 7672 7171	2726 2652 2404

IX. (continued).

		$\lambda = 0$.	7		$\lambda = 0.7$					
\$	(x)	(<i>y</i>)	(1)	(v)	φ	(x)	(y)	(1)	(7')	
27°	9190	2852	6718	2214	13°	1999	220°0	2147	891	
26	8393	2455	6301	2063	14	2137	253°1	2306	886	
25	7696	2122	5915	1938	15	2274	288°3	2466	881	
24	7077	1840	5553	1833	16	2409	325.7	2625	877	
23	6519	1597	5213	1743	17	2542	365.3	2784	873	
22	6013	1388	4891	1666	18	2675	407.1	2943	869	
21	5548	1205	458 5	1597	19	2806	451.0	3103	866	
20	5120	1044	4293	1537	20	2937	497.2	3263	863	
19	4722	903 [.] 6	4014	1483	21	3066	545.7	3424	860	
18	4351	779 [.] 4	3745	1435	22	3195	596·4	3585	858	
17	4003	669 [.] 6	3487	1391	23	3323	649·4	3747	855	
16	3675	57 ^{2.} 4	3237	1351	24	3451	704·9	3909	854	
15	3365	486 [.] 5	2996	1314	25	3578	762.8	4073	852	
14	3071	410 [.] 5	2762	1281	26	3704	823.2	4238	851	
13	2792	343 [.] 4	2535	1250	27	3831	886.1	4403	850	
12	2525	284·2	2314	1222	28	3957	951.7	4571	849	
11	2270	232·4	2099	1196	29	4082	1020	4739	849	
10	2026	187·1	1889	1171	30	4208	1091	4909	849	
9	1791	147·8	1683	1148	31	4334	1165	5081	849	
8	1565	114·0	1483	1127	32	4460	1242	5255	849	
7	1347	85·3	1286	1107	33	4585	1323	5431	850	
6 5 4	933 936	61·3 41·7 26·2	1093 901 717	1039 1072 1055	34 35 36	4712 4838 4965	1406 1493 1583	5609 5789 59 72	851 852 853	
3	544	14·4	534	1040	37	5092	1677	61 57	854	
2	358	6·3	354	1026	38	5219	1775	6345	856	
I	177	1·5	176	1013	39	5348	1877	6536	858	
0 I 2 3	0 172 341 506	0 1.2 5.9 13.1	0 173 345 515	1000 988 977 967	40 41 42	5477 5606 5737	1984 2094 2210	6731 6928 7130	861 863 866	
4	667	23'0	683	957	43	5868	2330	7335	869	
5	825	35'4	850	947	44	6001	2456	7545	872	
6	980	50'3	1015	939	45	6134	2587	7759	876	
7	1133	67.7	1 179	931	46	6268	2724	7977	880	
8	1283	87.4	1 342	923	47	6404	2867	8201	884	
9	1430	109.5	1 504	916	48	6541	3016	8430	888	
IO	1575	133.8	1666	909	49	6679	3173	8664	893	
II	1719	160.3	1827	903	50	6819	3336	8905	897	
I2	1860	189.1	1987	897	51	6961	3508	9152	902	

13-2

	2	λ=0.2	7		λ=0.75					
ø	(x)	()	(<i>t</i>)	(v)	ϕ (x) (y) (t) (z					
52° 53 54	7104 7248 7395	3688 3876 4074	940 5 9666 993 5	908 913 919	29 ^{8°} 29 ¹ / ₂ 29 ¹ / ₄	14298 13737 13228	5528 5209 4923	8587 8407 8236	3678 3496 3338	
55 56 57	7543 7693 7846	4282 4501 4732	10212 10498 10794	9 25 932 938	29 283 281 281	12762 12333 11935	4663 4426 4209	8073 7917 7766	3199 3076 2966	
58 59 60	8000 8157 8317	4974 5231 5501	11100 11417 11745	945 952 959	28 1 28 27	11564 11217 10014	4009 3823 3196	7622 7482 6966	2867 2777 2486	
61 62 63	8479 8643 8810	5787 6090 6412	12087 12442 12812	967 975 983	26 9030 2706 6503 2 25 8199 2309 6081 2 24 7480 1981 5692 1					
64 65 66	8980 9153 9329	6752 7115 7501	13198 13601 14024	991 999 1008	23 22 21	6846 6280 5768	1705 1470 1269	5329 4989 4667	1850 1755 1672	
67 68 69	9508 9690 9875	7912 8352 8822	14467 14933 15424	1017 1026 1035	20 19 18	5301 4872 4474	1094 942:0 809:1	4363 4072 3795	1600 1537 1481	
70 71 72	10064 10256 10451	9327 9870 10454	15942 16491 17073	1044 1054 1063	17 16 15	4105 3759 3434	692°5 590°0 499°9	3528 3272 3025	1430 1385 1344	
73 74 75	10651 10853 11060	11086 11771 12516	17693 18356 19066	1073 1083 1092			$\lambda = 0.8$	}		
76 77 78	11270 11483 11701	13328 14219 15200	19831 20659 21560	1102 1111 1121	φ	(x)	(y)	(1)	(7)	
79 80	11922 12146	16288 17501	22546 23633	1130 1139	30° 293 201	20497 18699	8850 7817	9720 9398	6999 5914	
λ=0.12					29½ 29½ 29	17357 16286 15395	7054 6451 5955	9119 8871 8645	5214 4714 4335	
ø	(x)	(y)	(1)	(v)	29 283 283	14633	5955 5534 5171	8437 8243	4033	
31° 30 ⁴ 30 ¹ 30 ¹ 30 ¹ 30 ¹	18513 17376 16433 15626 14922	S007 7327 6768 6296 5887	9693 9433 9197 8980 8777	5376 4855 4460 4147 3892	232 284 28 274 274 274	13376 12845 12362 11920 11513	4851 4567 4312 4081 3870	7723 7566 7416	3787 3580 3404 3251 3116 2997	

	$\lambda = 0.8$					$\lambda = 0.85$					
φ	(x)	(y)	(<i>t</i>)	(v)	φ	(x)	(y)	(1)	(v)		
27° $26\frac{3}{4}$ $26\frac{1}{2}$	11135 10783 10452	3676 3498 3332	7272 7133 6999	2891 2795 2707	281° 28 27 ³ 27 ³	16942 15809 14885	6586 5981 5491	8740 8488 8260	5392 4823 4402		
261 26 253 254	10142 9849 9572	3178 3035 2900	6869 6743 6621	2628 2554 2487	27 <u>1</u> 27 <u>1</u> 27 <u>1</u> 27	14103 13426 12830	5082 4732 4426	8052 7859 7677	4075 3810 3591		
25 <u>1</u> 25 <u>1</u> 25 <u>1</u> 25	9309 9059 8820	2774 2655 2543	6502 6386 6274	2425 2367 2312	$26\frac{3}{4}$ $26\frac{1}{2}$ $26\frac{1}{4}$	12296 11814 11374	4156 3914 3696	7506 7344 7189	3406 3246 3106		
24 23 22	7962 7228 6585	2152 1832 1566	5849 5458 5096	2127 1980 1860	26 $25\frac{3}{4}$ $25\frac{1}{2}$	109 70 10596 10248	3497 3316 3149	7042 6900 6763	2984 2874 2775		
21 20 19	6015 5502 5036	1341 1150 984*5	4757 4437 4135	1759 1672 1597	25 1 25 24	9923 9617 8555	2995 2852 2367	6631 6504 6031	2686 2605 2340		
18 17 16	4609 4215 3849	841.6 717.3 608.9	3847 3572 3309	1532 1474 1422	23 22 21	7682 6940 6296	1987 1679 1426	5605 5216 4855	2142 1986 1860		
15 14 13	3507 3187 2886	514·2 431·3 35 ⁸ ·9	3055 2811 2575	1376 1334 1296	20 19 18	5726 5217 4755	1213 1032 877 ⁻ 5	4519 4202 3903	1755 1665 1589		
12 11 10	2601 2330 2073	295 ^{.6} 240 ^{.6} 192 ^{.9}	2347 2125 1909	1261 1229 1200	17 16 15	4333 3945 3585	744 [•] 4 629 [•] 3 529 [•] 5	3619 3347 3087	1 522 1463 1410		
9 8 7	1827 1592 1367	151.8 116.7 87.0	1700 1495 1295	1173 1148 1124	$\gamma = 0.0$						
6 5 4	1151 943 742	62·3 42·3 26·4	1099 908 720	1 103 1083 1064	φ	(x)	(y)	(t)	(v)		
3 2 1 0	547 359 177 0	14.6 6.3 1.6 0	535 354 176 0	1046 1030 1015 1000	27 ¹ ° 27 ¹ 27 26 ³ / ₄ 26 ³ / ₄ 26 ¹ / ₂	19528 17512 16090 14992 14096	7703 6658 5930 5373 4924	8909 8575 8296 8050 7829	7561 6150 5315 4747 4328		
	a su presentario de la				26 1 26 25 3 25 3	13341 12688 12113	4550 4229 3950	7627 7439 7262	4003 3742 3525		

IX. (continued).

	2	$\gamma = 0.$)				$\gamma = 0.\ddot{c}$)	
φ	(x)	(y)	(1)	(v)	φ	(.x)	()	(t)	(v)
25 ¹⁰ 25 ¹ 25 ¹ 25	11599 11135 10712	3704 3484 3285	7097 6939 6789	3342 3184 3047	7° 8 9	1 109 1 253 1 393	65.8 84.7 105.7	1 167 1 326 1 485	912 902 893
24 ⁸ 24 ¹ / ₂ 24 ¹ / ₂ 24 ¹ / ₄	10323 9963 9629	3105 2940 2789	6645 6508 6375	2926 2818 2721	10 11 12	1531 1666 1799	128.8 153.8 180.8	1642 1798 1953	884 876 869
24 234 231 231	9316 9023 8747	2649 2519 2398	6247 6123 6004	2633 2553 2480	13 14 15	1930 2058 2185	209 [.] 8 240 [.] 6 273 [.] 4	210S 2262 2416	861 855 849
23 1 23 22	8486 8238 7361	2285 2179 1816	5 ⁸⁸ 7 5774 5351	2413 2351 2142	16 17 18	2310 2433 2555	308.0 344.5 382.9	2569 2722 2875	843 838 833
21 20 19	6621 5981 5418	1524 1285 1085	4965 4608 4276	1981 1851 1743	19 20 21	2675 2794 2912	423°1 465°3 509°3	3027 3180 3333	828 824 820
18 17 16	4916 4462 4049	917°1 774°0 651°4	3963 3668 3388	1652 1574 1506	22 23 24	3028 3144 3259	555 [•] 3 653 [•] 2	3487 3641 3795	816 813 810
15 14 13	3668 3316 2989	545 ^{.8} 454 ^{.8} 376 [.] 1	3121 2865 2619	1447 1394 1347	25 26 27	3373 3487 3599	705 ^{.2} 759 [.] 3 815 ^{.5}	3950 4106 4263	807 805 803
12 11 10	2682 2394 2123	308·1 249·5 199·1	2382 2153 1932	1 304 1 266 1 2 30	28 29 30	3711 3823 3934	873 [.] 9 934 [.] 5 997 [.] 5	4420 4579 4739	801 799 798
9 8 7	1865 1621 1388	156°0 119°4 88°8	1717 1508 1305	1198 1169 1142	31 32 33	4045 4156 4267	1063 1131 1201	4901 5064 5228	797 796 796
6 5 4	1165 952 747	63 [.] 4 42 [.] 8 26 [.] 7	1106 912 723	1117 1094 1072	34 35 36	4377 4488 4598	1274 1350 1429	5395 5563 5734	795 795 795
3 2 I 0	550 361 177 0	14.7 6.4 1.6 0	537 355 176 0	1052 1034 1016	37 38 39	4708 4819 4930	1511 1595 1684	5907 6082 6259	796 796 797
1 2 3	172 339 501	1.2 5.9 12.9	173 344 512	1000 985 971 957	40 41 42	5041 5153 5264	1775 1870 1969	6440 6623 6810	799 800 801
4 56	659 813 963	22·6 34·7 49·1	678 843 1006	945 933 922	43 44 45	5377 5490 5603	2072 2180 2291	7000 7193 7391	803 805 808

λ=0.9					λ=0.92					
φ	(x)	(y)	(<i>t</i>)	(v)	φ	(x)	(y)	(<i>t</i>)	(v)	
46° 47 48	5717 5832 5948	2407 2528 2655	7592 7798 8008	810 813 816	26° 25 ³ 25 ³ / ₂	16125 14878 13895	5758 5153 4682	8057 7798 7569	5724 5007 4506	
49 50 51	6065 6182 6301	2787 2924 3068	8223 8444 8670	819 823 826	25 1 25 24 <u>8</u> 24 <u>8</u>	1 3084 1 2395 1 1 794	4297 3974 3696	7361 7169 6991	4129 3832 3592	
52 53 54	6421 6541 6664	3219 3376 3541	8902 9141 9386	830 834 838	24 ¹ / ₂ 24 ¹ / ₄ 24	11263 10787 10355	3452 3236 3043	6823 6665 6514	3391 3220 3073	
55 56 57	6787 6912 7038	3714 3895 4086	9639 9899 10168	843 847 852	23 ⁸ 23 ¹ / ₂ 23 ¹ / ₂ 23 ¹ / ₄	9961 9597 9261	2868 2709 2564	6371 6234 6102	2944 2830 2727	
58 59 60	7165 7294 7425	4286 4497 4719	10446 10733 11031	857 863 869	23 22 21	8947 7872 7002	2430 1984 1641	5974 5506 5087	2636 2343 2129	
61 62 63	7558 7692 7828	4953 5200 5462	11340 11661 11995	874 880 886	20 19 18	6273 5645 5094	1368 1146 961 -5	4706 4355 4028	1964 1833 1724	
64 65 66	7966 8107 8249	5739 6033 6345	12343 12706 13086	893 899 906	17 16 15	4603 4160 3757	806 ·5 675·3 563·4	3721 3431 3156	1633 1555 14 ⁸ 7	
67 68 69	8393 8540 8689	6677 7031 7409	1 3484 1 3902 1 4 3 4 2	913 920 927						
70 71 72	8840 8993 9149	7814 8247 8714	14806 15296 15817	934 942 949						
73 74 75	9308 9469 9633	9217 9761 10351	16370 16960 17593	958 964 972						

		$\gamma = 1$	0		$\gamma = 1.1$					
φ	(.x)	(J')	(1)	(v)	φ	(x)	(<i>y</i>)	(<i>t</i>)	(v)	
25.1° 25 243 243	17685 15804 14484	6312 5430 4818	8079 7763 7499	7314 5931 5118	23 ^{1°} 23 22 ³ / ₄	15625 14026 12875	5037 4353 3868	7305 7018 6775	6688 5513 4797	
24 <u>2</u> 24 <u>1</u> 24	13467 12638 11940	4351 3976 3664	7267 7059 6868	4567 4162 3848	$22\frac{1}{2}$ $22\frac{1}{4}$ 22	11976 11239 10614	3493 3189 2935	6561 6367 6189	4302 3934 3646	
23 ⁸ 23 ¹ / ₂	11337 10806	3397 3164	6690 6524	3595 3386	21 3 21 3 214	10071 9592	2717	6023 5867	3413 3219	
23‡ 23 22¾	10332 9904 9514	2959 2777 2612	6368 6219 6077	3210 3058 2926	21] 21]	9163 8775	2359 2209	5720	3055 2913	
22 ¹ / ₂ 22 ¹ / ₂	9156 8824	2462 2326	5942 5812	2809 2705	20 ³ / ₄ 20 ¹ / ₂	8421 8094	2074 1951	5448 5320	2700 2680	
22 21 ⁸ / ₄	8516 8228	220I 2085	5687 5566	2612 2528	20 1 20 19 3	7792 7511 7248	1839 1736 164 1	5198 5080 4966	2583 2496 2416	
21 21 21 21	7957 7703 7462	1978 1878 1785	5449 5336 5226	245I 238I	19 ¹ / ₂ 19 ¹ / ₄	7002 6769	1553 1471	4856 4749	2343 2277 2216	
20 19	6613 5903	1468 1216	4815	2317 2102 1938	19 18 17	6549 5771 5119	1395 1135 928.8	4645 4257 3903	2013 1857	
18 17 16	5293 4758 4281	1012 842.8 701.6	4098 3777 3477	1806 1698 1608	16 15	4558	762·5	3577	1732	
15 14	3852 3461	582.5 481.5	3193 2923	1530 1463	14 13	3627 3231	512·3 417·2	2987 2717	1544 1470	
13 12	3103 2772	395 · 4 321·9	2666 2419	1404 1352	12 11 10	2870 2539 2233	337 ^{.2} 269 [.] 8 213 ^{.0}	2460 2215 1979	1406 1350 1300	
11 10	2464 2176	259·2 205·8	2183 1955	1306 1264	9 8	1948 1682	165·3 125·5	1753 1535	1256 1216	
9 8 7	1905 1650 1409	160°5 122°4 90°6	1735 1521 1314	1226 1192 1160	7 6 5	1432 1195 972	92 [.] 5 65 [.] 6 44 [.] 0	1325 1120 922	1180 1147 1117	
6 5 4	1180 962 753	64°5 43°4 27°0	1113 917 726	1132 1105 10\$1	3 3	759 557	27.3	729 540	1050	
3 2	554 362	14·S 6·4	539 356	1058 1038	2 1 0	363 178 0	6.4 1.6 0	356 176 0	1041 1020 1000	
I O	178 0	0	176 0	1018	1 2 3	171 336 496	1.2 5.8 12.8	173 343 510	981 964 948	

IX. (continued).

		$\gamma = 1.1$	I				y = i.	I	
φ	(x)	(y)	(1)	(v)	φ	(x)	()	(1)	(v)
4°	650	22·2	674	933	43°	4977	1869	6714	751
5	800	34·0	836	919	44	5075	1962	6895	752
6	946	48·0	996	906	45	5174	2059	7079	753
7	1087	64.1	1155	894	46	5273	2160	7267	755
8	1224	82.2	1311	882	47	5373	2265	7458	757
9	1358	102.2	1465	871	48	5473	2375	7654	759
10	1489	124·1	1619	861	49	5574	2489	7854	761
11	1617	147·9	1771	852	50	5676	2608	8059	764
12	1743	173·3	1922	843	51	5778	2731	8269	766
13	1865	200 [.] 5	207.I	834	52	5881	2861	8484	769
14	1986	229 [.] 4	222 I	827	53	5984	2996	8705	772
15	2104	260 [.] 0	2369	819	54	6089	3137	8932	776
16	2220	292.2	2517	812	55	6194	3285	9166	779
17	2335	326.1	2664	806	56	6301	3440	9406	783
18	2447	361.6	2811	800	57	6408	3602	9654	787
19	2558	398·7	2958	794	58	6517	3773	9911	791
20	2667	437·4	3104	789	59	6626	3952	10175	795
21	2775	477·8	3251	784	60	6737	4140	10449	799
22	2882	5199	3397	780	61	6849	4338	10734	804
23	2988	563.6	3544	776	62	6963	4547	11029	809
24	3092	609.1	3692	772	63	7078	4768	11335	814
25	3196	656·2	3840	768	64	7194	5002	1 1655	819
26	3299	705·2	3988	765	65	7312	5249	1 1988	824
27	3400	755·9	4137	762	66	7431	5511	12336	830
28 29 30	3501 3602 3702	808·5 863·0 919·5	4286 4437 4589	760 757 755	67 68 69 70	7552 7675 7799 7926	5789 6086 6401 6739	12701 13083 13485 13909	836 841 847 853
31 32 33	3801 3900 3998	978°0 1039 1101	4742 4896 5051	753 752 751			$\gamma = 1.5$		
34 35 36	4097 4195 4293	1166 1234 1303	5208 5367 5527	750 749 748	φ	<i>(x)</i>	(y)	(<i>t</i>)	(1)
37 38 39	4390 4488 4585	1376 1451 1528	5690 5854 6021	748 748 748	$2I\frac{1^{\circ}}{2}$ $2I\frac{1}{4}$	13864 12496	4059 3524	6640 6378	6133 5134
40	4683	1609	6190	748	$2I \\ 20\frac{3}{4} \\ 20\frac{1}{2}$	11490	3135	6154	4503
41	4781	1692	6362	749		10694	2831	5954	4059
42	4879	1779	6536	750		10035	2583	5773	3724

IX. (continued).

		$\lambda = 1.3$	2				$\lambda = 1$	3	
φ	(.x)	('')	(1)	(7')	φ	(x)	(5)	(1)	(v)
20 ¹ ° 20 19 ³	9473 8984 8550	2375 2195 2038	5606 5450 5304	3460 3246 306 5	18 ³⁰ 18 ¹ / ₂ 18 ¹ / ₄	8569 8116 7714	1966 1813 1679	5127 4978 4839	3327 3122 2951
19 <u>1</u> 191 191 19	8161 7807 7484	1899 1775 1663	5166 5034 4908	2912 2780 2664	18 17 [‡] 17 [‡]	7354 7026 6726	1561 1456 1360	4707 4581 4461	2804 2678 2567
$ 18\frac{3}{4} 18\frac{1}{2} 18\frac{1}{4} $	7186 6910 6653	1561 1468 1383	4788 4672 4561	2562 2470 2388	17‡ 17 16‡	6450 6193 5954	1274 1195 1122	4346 4235 4129	2469 2381 2302
18 17 16	6412 5578 4 ⁸ 95	1304 1041 838·2	4453 4053 3693	2313 2071 1891	16 <u>1</u> 16 <u>1</u> 16	5730 5520 5321	1055 993 [.] 5 936 [.] 0	4026 3926 3829	2230 2165 2104
15 14 13	4317 3817 3375	677·8 548·2 442·1	3363 3058 2773	1752 1639 1545	15 14 13	4622 4039 3539	742 . 0 591.1 470.9	3466 3137 2833	1906 1754 1634
12 11 10	2980 2622 2295	354 [.] 4 281 [.] 5 220 [.] 9	2503 2248 2005	1466 1399 1340	12 11 10	3101 2712 2361	373 ^{.8} 294 ^{.5} 229 ^{.5}	2550 2284 2033	1536 1453 1383
9 8 7	1994 1715 1455	170°5 128°8 94°5	1773 1550 1335	1288 1241 1200	9 8 7	2043 1750 1479	176·1 132·3 96·7	1793 1565 1346	1322 1269 1222
6 5 4	1211 982 765	66·7 44·7 27·6	1128 927 732	1163 1130 1099	6 5 4	1228 993 772	68·0 45 [·] 3 27 [·] 9	1135 931 734	1180 1142 1108
3 2 1 0	560 365 178 0	15.0 6.2 1.6 0	542 357 176 0	1071 1046 1022 1000	3 2 1 0 1	563 366 179 0 171	15.1 6.5 1.6 0 1.5 5.8	543 358 177 0 173	1078 1049 1024 1000 978
		$\lambda = 1.3$	3		23	334 491 642	5.8 12.6 21.8	342 507 670	958 939
φ	(.x)	(1)	(1)	(v)	4 5 6	788 929	33 [.] 3 46 [.] 9	830 988	922 906 891
20° 19 ³	12597 11351	3391 2940	6108 5860	5844 4910	7 8 9	1065 1198 1326	62·4 79·8 99·0	1143 1296 1447	877 864 852
194 194 194 19	10428 9696 9088	2940 2611 2354 2143	5647 5458 5286	4316 3896 3578	10 11 12	1451 1572 1691	119 [.] 9 142 [.] 4 166 [.] 5	159 7 1745 1892	840 829 819

		$\lambda = 1.3$	3				λ = 1.3	3		
φ	(x)	(1)	(1)	(v)	ø	(x)	(ינ)	(<i>t</i>)	(v)	-
13°	1807	19 2°2	2038	810	52°	5441	2578	8129	720	y
14	1920	219°4	2182	801	53	5532	2696	8335	722	
15	2031	248°1	2326	793	54	5623	2820	8548	725	
16	2140	278*2	2469	785	55	5715	2949	8766	728	
17	2246	309*8	2611	778	56	5808	3084	8991	731	
18	2351	. 342*8	2753	771	57	5902	3226	9222	734	
19	2454	377 ^{.2}	2894	765	58	5996	3374	9461	737	
20	2555	413 ^{.1}	3035	759	59	6092	3530	9708	741	
21	2655	450 [.] 4	3176	753	60	6188	3693	9964	745	
22	2753	489 °1	3317	748	61	6285	3865	10228	748	
23	2850	529°3	3458	743	62	6383	4046	10503	752	
24	2946	571°0	3599	739	63	6483	4237	10788	757	
25 26 27	3041 3135 3228	614 · 2 658·9 705·1	3740 3882 4024	735 731 727	64 65	6583 6685	4439 4652	11085 11394	761 766	_
28 29 30	3320 3411 3502	753.0 802.5 853.7	4167 4311 4455	724 721 719			λ = Ι.	1		-
31 32 33	3591 3681 3770	906.7 961.4 1018	4600 4747 4895	716 714 713	φ	(x)	(y)	(<i>t</i>)	(v)	-
34	3858	1076	5044	711	18 ³⁰	11923	3004	5724	5942	
35	3946	1137	5194	710	18 ¹ / ₂	10655	2576	5476	4920	
36	4034	1200	5346	709	18 ¹ / ₂	9736	2271	5265	4291	
37 38 39	4121 · 4209 4296	1264 1331 1401	5500 5655 5813	708 707 706	18 173 171 171	9016 8424 7921	2035 1844 1685	5079 4910 4754	3853 3527 3271	
40	4383	1472	5973	706	17‡	7484	1548	4610	3064	
41	4470	1547	6135	706	17	7098	1429	4474	2891	
42	4557	1624	6299	707	163	6751	1324	4345	2745	
43 44 45	4644 4731 4819	1704 1787 1873	6467 6637 6810	707 708 709	16 <u>1</u> 16 <u>1</u> 16 <u>1</u> 16	6438 6151 5888	1230 1146 1070	4223 4107 3995	2619 2508 2411	
46	4907	1962	6987	710	15 ²	5643	1000	3888	2323	
47	4995	2055	7167	711	15 ¹ / ₂	5416	936·5	3784	2245	
48	5083	2151	7351	712	15 ¹ / ₄	5203	877·9	3684	2174	
49	5172	2251	7538	714	15	5003	823 [.] 8	3587	2109	
50	5261	2356	7730	716	14	4305	643 [.] 2	3227	1898	
51	5351	2465	7927	718	13	3729	504 [.] 8	2901	1741	

IX. (continued).
-------	-------------

		$\gamma = 1.$					$\gamma = 1.5$	5	
ø	(x)	()	(1)	(v)	φ	(x)	('')	(1)	(v)
12 ⁰ 11 10	3239 2812 2434	396°0 309°1 238°9	260 I 2323 2062	1616 1515 1431	6° 5 4	1263 1015 785	70 ^{.6} 46 ^{.6} 28 ^{.5}	1150 941 740	1217 1169 1128
9 8 7	2095 1787 1505	182 ·1 136 ·0 98 · 9	1815 1581 1357	1359 1298 1245	3 2 1 0	570 369 179 0	15.4 6.6 1.6 0	546 359 177 0	1091 1058 1027 1000
6 5 4	1245 1004 778	69°2 46°0 28°2	1143 936 737	1197 1155 1118	I 2 3	170 332 487	1.2 5.7 12.4	172 341 505	975 952 931
3 2 I 0	567 368 179 0	15.2 6.5 1.6 0	545 358 177 0	1084 1053 1026 1000	4 5 6	635 777 914	21.5 32.7 45.8	666 824 979	911 893 877
		γ = 1.		1000	7 8 9	1046 1173 1296	60 [.] 8 77 [.] 6 95 [.] 9	1132 1282 1430	861 847 833
4	(<i>x</i>)	(y)) (<i>t</i>)	(v)	10 11 12	1415 1531 1644	115.9 137.4 160.3	1577 1721 1864	820 809 798
т 17 ^{дс}	12110	2932	5513	6843	13 14 15	1753 1860 1965	184.6 210.2 237.2	2006 2146 2286	787 778 769
173 174 174 17 163	10532 9485 8701 8073	2431 2103 1861 1671	5238 5015 4821 4648	5333 4518 3989 3611	16 17 18	2067 2167 2264	265.5 295.1 325.9	2424 2562 2699	760 752 745
16 <u>3</u> 16 <u>4</u> 16	7550 7102 6710	1515 1383 1270	4491 4345 4209	3323 3094 2906	19 20 21	2360 2455 2547	358.0 391.4 426.0	2835 2972 3107	738 732 726
152 152 152	6362 6048 5763	1171 1083 1004	4081 3959 3844	2749 2615 2499	22 23 24	2638 2728 2817	462°0 499°2 537°6	3243 3378 3514	720 715 710
15 14 13	5502 4632 3953	933.8 708.6 545.3	3733 3331 2977	2396 2085 1870	25 26 27	2904 2990 3076	577°5 618°6 661°1	3650 3785 3922	705 701 697
12 11 10	3396 2924 2513	421.7 325.4 249.3	2658 2365 2093	1710 1585 1484	28 29 30	3160 3243 3326	705°0 750°4 797°2	4059 4196 4334	693 690 687
9 8 7	2151 1826 1532	188.6 140.0 101.3	1838 1597 1368	1400 1329 1269	31 32 33	3408 3490 3571	845.6 895.5 947.0	4473 4613 4754	684 682 680

		$\gamma = 1.3$	5				$\gamma = 1.6$		
φ	(x)	(5)	(1)	(v)	φ	(<i>x</i>)	(<i>y</i>)	<i>(t)</i>	(v)
34° 35 36	3651 3731 3811	1000 1055 1112	4896 5039 5184	678 676 675	15° $14\frac{3}{4}$ $14\frac{1}{2}$	6206 5872 5572	1094 1005 926*8	3918 3793 3675	2845 2689 2556
37 38 39	3890 3969 4048	1171 1231 1294	5330 5478 5628	673 672 671	14 <u>‡</u> 14 13 3	5300 5051 4821	857°0 794°3 737°5	3562 3455 3351	2441 2340 2251
40 41 42	4126 4205 4283	1 359 1 4 2 6 1 4 9 5	5780 5934 6090	671 670 670	13 <u>1</u> 13 <u>1</u> 13 <u>1</u> 13	4608 4409 4223	685·9 638·6 595·2	3252 3157 3064	2171 2100 2034
43 44 45	4362 4440 4519	1567 1641 1718	6249 64 10 6574	670 670 671	12 11 10	3578 3049 2600	451.8 344.1 260.9	2720 2410 2126	1822 1666 1543
46 47 48	4597 4676 4755	1798 1882 1968	6741 6912 7085	672 672 673	9 8 7	2211 1868 1560	195·7 144·3 103·7	1862 1614 1381	1445 1363 1294
49 50 51	4834 4914 4994	2057 2151 2248	7263 7444 7630	675 676 678	6 5 4	1282 1027 792	71 [.] 9 47 [.] 4 28 [.] 8	1159 947 744	1235 1183 1138
52 53 54	5074 5155 5236	2349 2454 2564	7820 8015 8215	679 681 683	3 2 I	574 370 180 0	15.5 6.6 1.6 0	548 360 177 0	1098 1062 1029 1000
55 56 57	5318 5400 5483	2678 2798 2923	8421 8633 8851	686 688 691		1	$\lambda = 1$		
58 59 60	5567 5651 5736	3054 3192 3337	9076 9308 9548	694 697 700	φ	(x)	(<i>y</i>)	(1)	(v)
		$\lambda = 1.6$	5		15 ¹⁰	8910 8025	1789	4554	4884
φ	(x)	(y)	(<i>t</i>)	(v)	15 1 15 14 3 14 <u>3</u> 14 <u>1</u>	7352 6810 6356	1545 1363 1219 1101	4350 4173 4014 3868	4173 3702 3362 3100
16 <u>1</u> ° 16 <u>1</u> 16	9924 8890 8125	2153 1849 1628	4927 4706 4516	5320 4472 3932	14 <u>‡</u> 14 13 2	5965 5622 5316	1000 914°0 838°6	3734 3607 3489	2891 2720 2575
15 ⁴ 15 ¹ / ₂ 15 ¹ / ₄	7517 7013 6582	1455 1314 1195	4346 4192 4050	3550 3260 3032	13 ¹ / ₂ 13 ¹ / ₄ 13	5041 4790 4560	771.8 712.2 658.5	3376 3268 3165	2452 2344 2250

		λ = 1.2	7			;	λ = 1.2	7	
φ	(x)	(y)	(1)	(v)	φ	(x)	<i>(y)</i>	(<i>t</i>)	(v)
J 2 ⁰	3793	485°1	2791	1961	25°	2781	545°1	3567	679
I I	3191	365°6	2460	1761	26	2861	583°2	3697	674
I 0	2697	273°8	2162	1611	27	2939	622°6	3829	670
9	2277	203 ^{.5}	1887	1494	28	3017	663·1	3960	666
8	1913	14 ^{8.9}	1632	1400	29	3094	705·0	4092	663
7	1590	106 [.] 4	1393	1321	30	3171	748·1	4225	659
6	1 301	73 [•] 4	1 167	1255	31	3246	792°6	4358	656
5	1039	48 [•] 1	952	1198	32	3321	838°5	4492	654
4	799	29 [•] 2	747	1148	33	3395	885°8	4627	651
3 2 I	577 372 180	15.6 6.6 1.6	550 360 177	1105 1066 1031 1000	34 35 36	3469 3542 3615	934°5 984°9 1037	4763 4900 5039	649 647 645
0 I 2 3	0 170 330 482	0 1·5 5·7 12·3	0 172 339 503	972 946 923	37 38 39	3688 3760 3832	1090 1146 1203	5178 5320 5463	643 642 641
4	627	21·2	662	901	40	3903	1262	5608	640
5	766	32·0	818	881	41	3975	1323	5754	639
6	898	44·8	971	863	42	4046	1386	5903	639
7	1026	59°3	1121	846	43	4117	1451	6055	639
8	1148	75°5	1268	830	44	4188	1519	6208	639
9	1266	93°1	1414	816	45	4260	1589	6365	639
10	1 38 1	112 ^{.2}	1557	802	46	4331	1661	6524	639
11	149 1	132 ^{.7}	1698	790	47	4402	1736	6686	640
12	1 598	154 ^{.5}	1838	778	48	4474	1814	6851	640
13	1702	177 ^{.6}	1976	767	49	4545	1895	7020	641
14	1804	201 ^{.9}	2112	756	50	4617	1980	7192	642
15	1902	227 [.] 4	2248	747	51	4689	2067	7369	643
16	1998	254°0	2382	738	52	4762	2158	7549	645
17	2092	281°8	2516	729	53	4834	2253	7734	646
18	2184	310°S	2649	722	54	4908	2352	7924	648
19	2274	340 [.] 8	2781	714	55	4981	2455	8119	650
20	2362	372 [.] 1	2913	707	56	5055	2562	8320	652
21	2449	404 [.] 4	3044	701	57	5129	2675	8 52 6	654
22	2534	437 ^{.9}	3175	695	58	5204	2793	8739	657
23	2617	472 ^{.5}	3305	689	59	5280	2916	8959	659
24	2700	508 ^{.2}	3436	684	60	5356	3045	9186	662

IX. (continued).

		$\gamma = 1.8$;			2	λ = 1.ζ)	
ø	(x)	(<i>y</i>)	(<i>t</i>)	(v)	ø	(<i>x</i>)	(y)	(<i>t</i>)	(v)
$14\frac{10}{14\frac{1}{2}}$ $14\frac{1}{14}$ 14 123	7729 7034 6484 6029	1417 1239 1101 988 ·2	4148 3969 3809 3664	4263 3743 3376	9° 8 7	2428 2012 1655	221.5 159.3 112.2	1944 1671 1420	1610 1482 1381
13 ¹ / ₄ 13 ¹ / ₄ 13 ¹ / ₄ 13	5639 5300 4999	893 ^{.9} 813 ^{.2} 743 ^{.0}	3530 3405 3287	3099 2880 2702 2553	6 5 4	1342 1064 813	76·5 49·7 29·9	1185 963 753	1298 1229 1171
$ \begin{array}{c} 12\frac{3}{4} \\ 12\frac{1}{2} \\ 12\frac{1}{4} \\ 12\frac{1}{4} \end{array} $	4729 4484 4259	681·2 626·3 577·0	3176 3070 2968	2427 2317 2221	3 2 I 0	585 375 181 0	15 [.] 9 6 [.] 7 1 [.] 6 0	553 362 178 0	1119 1075 1035 1000
12 11 10	4052 3356 2805	532.6 390.6 288.4	2871 2516 2200	2136 1873 1688	1 2 3	169 328 478	1.5 5.6 12.1	172 338 500	969 940 915
9 8 7	2349 1961 1622	212.0 153.9 109.2	1915 1651 1406	1549 1439 1350	4 56	620 755 884	20 [.] 8 31 [.] 5 43 [.] 9	658 812 963	891 870 850
6 5 4	1321 1051 806	74°9 48°9 29°5	1176 957 750	1276 1213 1159	7 8 9	1007 1126 1239	57.9 73.5 90.5	1111 1255 1398	832 815 799
3 2 I	581 373 180	15.7 6.7 1.6	551 361 177	1112 1070 1033	10 11 12	1349 1454 1557	128·4 149·1	1538 1676 1812	785 772 759
0	0	$\gamma = 1.0$	0	1000	13 14 15	1656 1752 1845	171·1 194·2 218·3	1947 2080 2212	747 737 727
φ	(x)	(y)	(t)	(v)	16 17 18	1936 2025 2111	243 ^{.5} 269 ^{.8} 297 ^{.1}	2343 2473 2602	717 708 700
14° 13 ³	8142 7240	1475 1253	4116	4980 4170	19 20 21	2196 2279 2360	325.4 354.7 385.0	2730 2857 2984	692 685 678
131 131 131 131	6576 6051 5616	1092 966·5 865·0	3737 3581 3440	3659 3298 3027	22 23 24	2439 2517 2594	416·3 448·7 482·1	3111 3237 3363	672 666 661
$ 12\frac{3}{4} 12\frac{1}{2} 12\frac{1}{4} 12\frac{1}{4} $	5244 4921 4634	780·2 707·7 644·7	3310 3188 3073	2813 2638 2493	25 26 27	2670 2744 2818	516·5 552·0 588·6	3490 3616 3742	655 651 646
12 11 10	4376 3548 2926	589 [.] 4 420 [.] 6 305 [.] 1	2965 2577 2242	2369 2011 1777	28 29 30	2890 2962 3032	626·3 665·1 705·1	3869 3996 4124	642 638 635

		$\gamma = 1.\dot{c}$)				$\lambda = 2.0$)	
¢	(x)	()	(1)	(v)	φ	(x)	(1)	(1)	(v)
31° 32 33	3102 3171 3240	746 [.] 3 788 [.] 7 832 [.] 4	4252 4381 4511	631 628 626	11 ¹ / ₁ ° 11 10	3998 3780 3065	500.0 457.2 324.4	2747 2648 2289	2285 2184 1882
34 35 36	3308 3376 3443	877.5 923.9 971.7	4641 4773 4906	623 621 619	9 8 7	2515 2068 1691	232°I 165°I 115°4	1975 1693 1434	1679 1529 1414
37 38 39	3509 3576 3642	1021 1072 1124	5040 5176 5313	617 616 614	6 5 4	1365 1077 821	78·2 50·5 30·2	1194 969 757	1322 1245 1181
40 41 42	3708 3773 3838	1179 1235 1293	5452 5592 5735	613 612 612	3 2 1 0	588 376 181 0	16.0 6.7 1.6 0	555 362 178 0	1126 1079 1037 1000
43 44 45	3904 3969 4034	1352 1414 1478	5880 6027 6176	611 611 611			$\lambda = 2.1$		1000
46 47 48	4099 4164 4229	1544 1613 1684	6328 6483 6641	611 611 612	φ	(x)	(y)	(1)	(1)
49 50 51	4295 4360 4426	1758 1835 1914	6802 6967 7135	612 613 614	12 ¹⁰	6556	1027 885 ⁻ 1	3544	4137
52 53 54	4492 4558 4624	1997 2083 2173	7308 7484 7665	615 616 618	$ \begin{array}{r} 12\frac{1}{4} \\ 12 \\ 11\frac{3}{4} \\ 11\frac{1}{2} \\ \end{array} $	5909 5404 4990 4639	776.7 689.6 617.4	3372 3221 3083 2957	3596 3223 2947 2731
55 56 57	4691 4758 4826	2267 2365 2467	7851 8042 8239	619 621 623	11 1 11 10 <u>3</u>	4335 4066 3826	556 ^{.2} 503 ^{.3} 457 ^{.1}	2840 2729 2625	2556 2411 2288
		$\lambda = 2$))		10] 10] 10]	3608 3409 3226	416·2 379·7 347·0	2526 2431 2340	2183 2090 2008
\$	(x)	(y)	(1)	(7')	9 8 7	2611 2127 1728	244'0 171'5 118'8	2009 1715 1449	1757 1981 1450
13° $12\frac{3}{12\frac{1}{2}}$ $12\frac{1}{2}$	6608 6015 5540 5142	1068 932.7 826.1 738.9	3650 3485 3338 3203	3924 3471 3146 2897	6 5 4	1387 1091 828	80°0 51°3 30°6	1203 975 760	1346 1263 1193
	4801 4503 4237	665.6 602.8 548.1	3078 2962 2852	2700 2537 2401	3 2 1 0	592 378 181 0	16·2 6·8 1·6 0	557 363 178 0	1134 1083 1039 1000

IX. (continued).

		$\lambda = 2.1$	[$\lambda = 2$	E	
φ	(x)	(y)	(<i>t</i>)	(v)	φ	(x)	(y)	(ť)	(v)
1°	169	1.2	171	965	40°	3535	1106	5310	590
2	326	5.6	337	934	41	3595	1158	5446	589
3	474	12.0	498	906	42	3656	1211	5583	588
4	613	20 [.] 5	654	881	43	3716	1 267	5722	587
5	745	30 [.] 9	807	858	44	3776	1 324	5863	587
6	871	43 [.] 0	955	837	45	3836	1 383	6006	586
7	990	56.6	1 101	818	46	3896	1444	6152	586
8	1104	71.6	1243	800	47	3956	1507	6301	586
9	1214	88.0	1383	784	48	4015	1572	6452	586
IO	1319	105 [.] 6	1520	769	49	4076	1640	6607	587
11	1420	124 [.] 3	1655	755	50	4136	1710	6765	587
12	1518	144 [.] 2	1789	742	51	4196	1784	6926	588
13 14 15	1612 1704 1793	165°1 187°1 210°0	1920 2050 2179	730 718 708	52 53 54 55	4257 4317 4378 4439	1860 1939 2021 2107	7091 7260 7433 7611	589 590 591 593
16 17 18	1879 1963 2045	234°0 258°8 284°6	2306 2432 2558	698 689 680	33		$\lambda = 2^{2}$		393
19 20 21	2125 2203 2279	311.3 338.9 367.5	2682 2806 2929	672 665 658	φ	(x)	(y)	(<i>t</i>)	(v)
22	2354	396·9	3052	651	12°	6398	965·9	3419	4254
23	2427	427·3	3174	645	$11\frac{8}{4}$	5723	823·9	3243	3652
24	2499	458·6	3297	639	$11\frac{1}{2}$	5207	717·6	3090	3249
25 26 27	2570 2640 2708	490 ^{.9} 524 ^{.1} 558 [.] 3	3419 3541 3663	634 629 6 25	111 11 103 4	4788 4437 4134	633 · 4 564·3 506·0	2952 2826 2709	2955 2729 2548
28	2776	593 ^{.5}	3786	620	10½	3867	456°0	2600	2398
29	2842	629 ^{.7}	3908	616	10¼	3630	412°5	2496	2272
30	2908	667 ^{.0}	4031	613	10	3415	374°2	2398	2164
31	2973	705·3	4155	609 [.]	9	2720	257.6	2045 ·	1848
32	3038	744·8	4279	606	8	2193	178.5	1739	1639
33	3102	785·4	4405	603	7	1768	122.5	1464	1488
34	3165	827·3	4530	600	6	1411	81·8	1213	1373
35	3227	870·4	4657	598	5	1105	52·2	981	1280
36	3290	914·7	4785	596	4	836	31·0	763	1205
37 38 39	3351 3413 3474	960°5 1008 1056	4915 5045 5177	594 592 591	3 2 I 0	596 379 182 0	16·3 6·8 1·6 0	558 364 178 0	1142 1088 1041 1000

в.

14

		$\lambda = 2^{\circ}$	3				$\lambda = 2$	3	
φ	(x)	(y)	(<i>t</i>)	(v)	ø	(x)	(y)	(1)	(v)
	6129 5459 4951 4541	885.7 750.9 650.9 572.2	3273 3099 2947 2811	4248 3628 3217 2921	16° 17 18	1826 1905 1983	225·2 248·8 273·2	227 I 2394 25 16	681 671 662
10 ¹ 10 ¹ 10 ¹	4198 3903 3645	507.9 453.9 407.7	2687 2572 2464	2693 2512 2363	19 20 21	2059 2132 2204	298·5 324·6 351·6	2637 2758 2877	654 646 639
9 ³ 9 ¹ 9 ¹	3414 3206 3017	367·5 332·3 301·0	2362 2265 2173	2237 2130 2036	22 23 24	2275 2344 2412	379'4 408'0 437'5	2997 3116 3234	632 626 620
9 8 7	2843 2264 1810	273·1 186·3 126·4	2085 1764 1480	1954 1704 1530	25 26 27	2479 2544 2608	467·8 499·0 531·1	3352 3471 3589	615 610 605
6 5 4	1437 1120 844	83.8 53.2 31.4	1223 987 767	1400 1299 1217	28 29 30	2672 2734 2796	564·1 598·1 633·0	3708 3827 3946	600 596 593
3 2 1	600 381 182	16·4 6·8 1·6	560 364 178	1150 1092 1043	31 32 33	2857 2917 2977	668·9 705·8 743 [.] 7	4066 4186 4307	589 586 583
0 I 2	0 168 324	0 I·4 5·5 II·9	0 171 336 496	1000 962 929 899	34 35 36	3036 3094 3152	782·8 823·0 864·3	4429 4551 4675	580 578 575
3 4 56	470 606 735 857	20°2 30°4 42°1	651 801 948	899 872 848 825	37 38 39	3210 3267 3324	906.9 950.8 996.0	4799 4925 5053	573 571 570
7 8 9	973 1084 1190	55°3 69°8 85°6	1091 1231 1368	805 786 769	40 41 42	3380 3437 3493	1043 1091 1140	5181 5312 5444	568 567 566
9 10 11 12	1291 1388 1482	102°5 120°6 139°6	1503 1635 1766	754 739 726	43 44 45	3549 3604 3660	1191 1244 1299	5578 5714 5852	565 565 564
13 14 15	1572 1659 1744	159.6 180.6 202.4	1894 2021 2147	713 701 691	46 47 48 49 50	3716 3771 3827 3882 3938	1356 1414 1475 1537 1603	5992 6135 6281 6430 6581	564 564 564 564 565

IX. (continued).

IX. (continued).

		$\lambda = 2.4$	ł				$\lambda = 2.5$	5	
φ	(x)	(y)	<i>(t)</i>	(v)	φ	(x)	(y)	(<i>t</i>)	(v)
11° 10 <u>3</u> 10 <u>1</u> 10 <u>1</u>	5760 5129 4647	791.7 670.3 579.9	3111 2942 2794	4120 3528 3134	3° 2 1	608 384 183	16.7 6.9 1.6	564 366 179	1 166 1 101 1047
10 ¹ / ₄	4259 3932	508·7 450·4	2662 2541	2848 2628	0 I 2	0 167 322	0 1.4 5.5	0 171 335	1000 959 923
94 92 92 94	3651 3404 3184	401.5 359.6 323.3	2428 2323 2224	2452 2308 2186	3	466 600	19.9	493 647	891 863
9 834 84	2986 2805	291.4 263.2 238.0	21 30 2040	2082 1991	56	726 845	29.8 41.3	796 940 1081	837 814
81 81	2639 2486 2343	238 ⁻⁰ 215 ⁻ 4 195 ⁻ 0	1954 1871 1791	1911 1840 1776	7 8 9	957 1064 1166	54°1 68°2 83°4	1219 1354	793 773 756
7	2343 1856 1464	130.7	1497 1234	1575	10 11 12	1264 1357 1447	99'7 117'0 135'3	1486 1616 1744	739 724 710
5 4	1135 852	54°1 31°8	993 771	1319 1230	13 14	1534 1617	154.4 174.5	1870 1994	698 686
3 2 + I	604 382 182	16.6 1.6	562 365 178	1158 1097 1045	15. 16	1698 1776	195 ⁻ 4 217 [.] 0	2117 2238	675 664
0	0	0	0	1000	17 18	1852 1926	239 ^{.5} 262 ^{.8}	2358 2477	655 646
		$\lambda = 2.5$	5	1	19 20 21	1997 2067 2136	286·8 311·6 337·1	2595 2712 2829	637 629 622
ф 	(x)	(y)	(t)	(v)	22 23 24	2203 2268 2332	363.4 390.5 418.3	2945 3060 3176	615 608 603
104° 10 9 ³ 9 ¹ / ₂ 9 ¹ / ₂	4754 4312 3952 3648 3385	586.8 507.9 445.2 393.7 350.3	2774 2633 2506 2389 2281	3370 3010 2745 2540 2374	25 26 27	2395 2456 2517	447°0 476°4 506°6	3291 3406 3521	597 592 587
9 83 81 81	3154 2947 2759	313 ^{.0} 280 ^{.7} 252 ^{.3}	2179 2083 1991	2237 2122 2022	28 29 30	2576 2635 2693	537 ^{.7} 569 ^{.6} 602 [.] 4	3636 3751 3867	583 578 574
8‡ 8 7	2589 2432 1906	227·2 204·7 135·3	1904 1820 1515	1936 1859 1625	31 32 33	2750 2807 2863	636·2 670·8 706·4	3983 4099 4216	571 568 564
6 5 4	1492 1151 861	88·1 55·1 32·2	1245 1000 774	1461 1339 1243	34 35 36	2918 2973 3027	743 [.] 1 780 [.] 7 819 [.] 4	4334 4453 4572	562 559 557

14-2

IX. (continued).

		$\lambda = 2$	5				$\lambda = 2 \gamma_{1}^{2}$	7	
φ	(x)	(y)	(1)	(v)	ø	(x)	(y)	(<i>t</i>)	(v)
37° 38 39	3081 3134 3188	859°3 900°3 942°6	4693 4815 4938	555 553 551	91° 91 92 82	4383 3952 3603 3311	500°1 428°9 372°9 327°3	2564 2425 2300 2186	3340 2966 2695 2486
40 41 42 43	3240 3293 3345 3397	986·1 1031 1077	5062 5188 5316 5445	549 548 547 546	81 81 81 81	3060 2839 2642	289·1 256·6 228·5	2080 1981 1887	2320 2183 2067
44 45 46	3449 3501 3553	1174 1225 1278	5577 5710 5846	545 545 544	7 ³ 7 ¹ / ₂ 7 ¹ / ₂ 7 ¹ / ₂	2465 2303 2154 2017	204.0 182.3 163.1 145.9	1799 1714 1633 1555	1969 1883 1807 1740
47 48 49 50	3604 3656 3708 3760	1 333 1 389 1447 1508	5984 6124 6267 6414	544 544 544 545	6 5 4	1553 1185 878	92·9 57·3 33·1	1269 1014 782	1531 1383 1271
	$\lambda = 2.0$					616 387 183	17.0 7.0 1.6	568 367 179	1183 1111 1051
φ	(x)	(y)	(t)	(v)	0 1 2 3	0 167 320 461	0 1.4 5.4 11.6	0 171 334 492	1000 956 918 884
10° 94 91 91 91 91	4 ⁸ 55 4354 3959 3632	592°5 505°3 438°2 384°2	2751 2601 2468 2347	3627 3175 2859 2621	4 56	593 716 832	19 [.] 6 29 [.] 3 40 [.] 5	643 791 933	854 827 803
9 8 8 4 8	3354 3112 2897	339°5 301°7 269°1	2235 2131 2033	2434 2283 2156	7 8 9	942 1045 1144	52·9 66·6 81·3	1072 1208 1341	781 761 743
8± 8 7‡	2704 2530 2370	240 [.] 8 215 [.] 8 193 [.] 7	1940 1852 1768	2048 1955 1874	10 11 12	1238 1328 1414	97.0 113.7 131.3	1471 1598 1723	726 [.] 710 696
71 71 7	2223 2086 1959	174°0 156°3 140°4	1687 1609 1534	180 2 1737 1679	13 14 15	1497 1577 1654	149 ^{.7} 168 [.] 8 188 [.] 8	1847 1968 2088	683 671 660
6 5 4	1522 1167 869	90°4 56°2 32°7	1256 1007 778	1495 1360 1257	16 17 18	1729 1802 1872	209°5 230°9 253°1	2207 2324 2440	649 639 630
3 2 1 0	612 385 183 0	16·9 7·0 1·6 0	566 367 179 0	1174 1106 1049 1000	19 20 21	1940 2007 2072	276.0 299.5 323.8	2555 2669 2783	622 614 606

		$\lambda = 2.7$	7				$\lambda = 2.8$	3	
φ	(<i>x</i>)	(y)	(1)	(7)	φ	(<i>x</i>)	(<i>y</i>)	(<i>t</i>)	(v)
22° 23 24	2135 2197 2258	348·8 374·4 400·8	2896 3008 3121	599 593 587	8‡° 8 7¥	2997 2771 2572	275°5 243°3 215°7	2026 1926 1832	2348 2202 2079
25 26 27	2317 2376 2433	428.0 455.8 484.4	3233 3345 3456	581 576 571	71/2 71/2 7	2393 2230 2081	191.7 170.7 152.1	1742 1657 1576	1976 1886 1808
28 29 30	2490 2545 2600	513 [.] 8 543 [.] 9 574 [.] 9	3568 3680 3792	566 562 558	6 5 4	1588 1203 888	95.6 58.5 33.6	1281 1021 786	1570 1406 1286
31 32 33	2654 2707 2760	606·7 639·3 672·9	3905 4018 4132	554 551 548	3 2 I	621 389 184 0	17·2 7·0 1·6 0	570 368 179	1191 1116 1053 1000
34 35 36	2812 2863 2915	707·3 742·8 779·2	4246 4361 4477	545 542 540					1000
37 38 39	2965 3015 3065	816 [.] 6 855 [.] 2 894 [.] 9	4594 4712 4831	538 536 534		1	$\lambda = 2.6$)	
40 41 42	3115 3164 3213	935 ^{.7} 977 ^{.8} 1021	49 52 5074 5197	532 531 530	φ 	(x)	(y)	(1)	(v)
43 44 45	3262 3311 3359	1066 1112 1160	5323 5450 5579	529 528 527	9° 834 812	4378 3882 3498	480 [.] 5 402 [.] 9 344 [.] 7	2475 2326 2195	3636 3141 2805
46 47 48	3408 3456 3504	1209 1260 1313	5710 5844 5980	527 526 526	81 8 74 74	3186 2922 2694	298.6 261.0 229.4	2077 1969 1868	2557 2366 2212
49 50	3553 3601	1368 1424	6118 6260	526 526	71 71 7	2493 2313 2151	202°5 179°2 158°9	1773 1684 1599	2084 1976 1884
		$\lambda = 2 \cdot \xi$	3	1	6 5 4	1623 1221 897	98·5 59·7 34·1	1294 1028 790	1612 1431 1301
φ	(x)	(y)	(t)	(v)	3 2 1	625 390 184	17.4 7.1 1.6	572 369 179	1200 · 1121 1055
91 91 91 93 81 81	5029 4393 3927 3559 3256	597 ^{.2} 492 ^{.0} 417 ^{.2} 359 ^{.7} 313 ^{.6}	2691 2522 2378 2250 2133	4191 3496 3062 2757 2528	0 I 2 3	0 166 318 458	0 1.4 5.4 11.5	0 170 333 489	1000 953 912 877

		$\lambda = 2.6$)				$\lambda = 2 \cdot q$	7	
φ	(x)	<i>(y)</i>	(1)	(v)	φ	(x)	(y)	(<i>t</i>)	(v)
4° 56	587 708 821	19°4 28°8 39'7	640 785 926	846 817 792	40° 41 42	3000 3047 3093	890°3 930°0 970°8	4850 4968 5088	516 515 514
7 8 9	927 1028 1123	51·8 65·1 79·3	1064 1197 1328	770 749 730	43 44 45	3139 3185 3230	1013 1056 1101	5210 5333 5458	513 512 511
10 I I I 2	1214 1301 1384	94°5 110°6 127°5	1455 1581 1704	713 697 683	46 47 48	3276 3321 3367	1148 1196 1245	5586 5715 5 ⁸ 47	510 510 510
13 14 15	1464 1540 1614	145°1 163°6 182°7	1824 1943 2061	669 657 645	49 50	3412 3457	1296 1350	5981 6118	510 510
16 17 18	1686 1755 1822	202.5 223.0 244.2	2177 2291 2405	635 625 616			$\lambda = 3$	0	
19 20 21	1887 1951 2013	266•0 288•5 311•6	2517 2629 2740	607 599 591	φ	(<i>x</i>)	(1)	(1)	(v)
22 23 24	2073 2132 2189	335*3 359*8 384*8	2850 2960 3069	584 578 572	9° 83	5106 4337	585°I 465°O	2606 2421	4735 3748
25 26 27	2246 2302 2356	410 [.] 6 437 ^{.0} 464 [.] 1	3178 3287 3396	566 561 556	81 81 81 81	3816 3421	385.9 327.7	2269 2136	3198 2835
28 29 30	2409 2462 2514	491 [.] 9 520 [.] 4 549 [.] 7	3505 3614 3723	551 547 543	7 ³ 7 ¹ / ₂	3103 2837 2608	282·3 245·5 214·9	2017 1909 1808	2573 2373 2213
31 32 33	2565 2615 2665	579 [.] 8 610 [.] 7 642 [.] 4	3833 3943 4053	539 536 532	7‡ 7 6	2407 2228 1661	188.9 166.2	1713 1624 1308	2081 1970 1657
34 35 36	2714 2763 2811	674 · 9 708·4 742·8	4164 4276 4389	529 527 524	5 4 3	1241 907 629	61.0 34.6 17.5	1036 794 573	1457 1316 1209
37 38 39	2859 2906 2953	778·1 814·5 851·8	4502 4617 4733	522 520 518	2 I O	392 184 0	7°1 1°6 0	370 179 0	1126 1057 1000

IX. (continued).

		$\lambda = 3$	I				$\lambda = 3$	I	4 8×
φ	(x)	(y)	(1)	(v)	ø	(x)	(y)	(1)	(v)
81° 81 8 7	4263 3727 3327 3008	445 ^{.5} 366 ^{.5} 309 ^{.3} 265 ^{.1}	2361 2207 2073 1954	3823 3230 2849 2575	19 ⁰ 20 21	1838 1899 1958	256·8 278·2 300·3	2482 2591 2699	593 585 578
7½ 7¼ 7	2742 2514 2315	229°5 200°0 175°1	1846 1745 1651	2368 2204 2070	22 23 24 25	2015 2071 2126 2180	323.0 346.2 370.1 394.6	2807 2914 3021	571 564 558
64 61 61 61	2138 1979 1835	153·8 135·3 119·2	1563 1479 1399	1958 1862 1779	26 27 28	2233 2284	419 ^{.7} 445 ^{.5}	3127 3233 3340	552 547 542
6 5 4	1702 1262 917	105°0 62°3 35°1	1322 1044 798	1707 1485 1332	29 30	2335 2385 2435	471.9 499.1 526.9	3446 3552 3659	537 533 529
3 2 1	634 394 185	17.7 7.2 1.6	575 371 180	1219 1131 1059	31 32 33	2483 2531 2578	555'4 584'7 614'7	3765 3872 3980	525 521 518
0 1 2 3	0 166 316 454	0 1.4 5.3 11.3	0 170 332 4 ⁸ 7	1000 950 907 870	34 35 36	2625 2671 2716	645 ^{.6} 677 [.] 3 709 ^{.8}	4088 4197 4307	515 513 510
4 56	581 699 809	19°1 28°4 39°0	636 780 920	837 808 782	37 38 39	2761 2806 2851	743 ^{.2} 777 ^{.6} 813 ^{.0}	4417 4529 4641	508 506 504
7 8 9	913 1011 1103	50 [.] 8 63 [.] 6 77 [.] 4	1055 1187 1315	759 738 718	40 41 42	2895 2939 2982	849 [.] 3 886 [.] 8 9 2 5 [.] 4	4755 4870 4987	502 501 499
10 11 12	1191 1275 1355	92°1 107°6 123°9	1441 1564 1684	701 685 670	43 44 45	3026 3069 3112	965°2 1006 1049	5105 5224 5346	498 497 496
13 14 15	1432 1505 1577	140 [.] 9 158 [.] 6 177 [.] 0	1803 1920 2035	657 644 632	46 47 48	3155 3198 3240	1092 1137 1184	5469 5595 5723	496 495 495
16 17 18	1645 1711 1776	196.0 215.7 235.9	2148 2261 2372	621 612 602	49 50	3283 3326	1232 1282	5853 5986	495 495

	2	$\lambda = 3^{\cdot 2}$:				$\lambda = 3.3$	3	
\$	(<i>x</i>)	(y)	(1)	(v)	φ	(x)	(y)	(1)	(v)
81° 8 73 73	4158 3617 3218	422°1 344°8 289°5	2295 2140 2007	3852 3233 2840	1° 2 3	165 314 450	1.4 5.3 11.2	170 331 485	947 902 863
71 71 71 7	2901 2638 2414	247°1 213°1 185°0	1888 1780 1680	2562 2353 2187	4 56	575 691 798	18·8 27·9 38·3	633 776 913	829 799 772
63 61 61 61	2218 2045 1889	161.4 141.2 123.8	1587 1500 1417	2052 1940 1844	7 8 9	899 994 1084	49 ^{.8} 62 ^{.2} 75 ^{.6}	1047 1177 1303	748 727 707
6 5 4	1747 1283 927	108·6 63·7 35·6	1 3 3 8 1 0 5 2 8 0 2	1761 1514 1349	10 11 12	1 169 1 2 50 1 3 2 7	89 [.] 9 104 [.] 9 120 [.] 6	1427 1548 1666	689 673 658
3 2 I	639 395 185 0	17.9 7.2 1.6 0	577 371 180 0	1229 1136 1061 1000	13 14 15	1401 1472 1540	137°0 154°0 171°7	1783, 1897 2010	644 632 620
		$\lambda = 3.3$	3		16 17 18	1606 1670 1731	190°0 208'8 228'2	2121 2231 2340	609 599 589
φ	(<i>x</i>)	(y)	(<i>t</i>)	(v)	19 20 21	1791 1849 1906	248·2 268·8 289·9	2448 2554 2660	581 573 565
8° 7 ³ 7 ¹ / ₂	4021 3487 3094	395 [.] 4 321 [.] 4 268 [.] 9	2223 2069 1937	3834 3207 2813	22 23 24	1961 2014 2067	311.6 333.8 356.6	2766 2870 2975	558 551 545
7 7 63	2784 2527 2308	228.6 196.5	1819 1713 1614	2535 2326 2162	25 26 27	2118 2168 2218	380°0 403°9 428°5	3078 3182 3286	539 534 529
61 61 6	2116 1947	147 [.] 8 128 [.] 9	1522 1436	2028 1916	28 29 30	2266 2314 2361	453 ^{.7} 479 ^{.5} 506 ^{.0}	3389 3493 3597	524 520 516
5 4	1795 1306 938	112.5 65.2 36.2	1354 1061 807	1821 1546 1367	31 32 33	2407 2452 2497	533°1 561°0 589°5	3701 3805 3910	512 508 505
3 2 1 0	643 397 186 0	18.0 7.2 1.7 0	580 372 180 0	1238 1141 1063 1000	34 35 36	2541 2585 2628	618·8 648·9 679·8	4016 4122 4228	502 499 497

1X. (continued).

IX. (continued).

		$\lambda = 3.4$	ł				$\lambda = 3.5$	5	
φ	(x)	(y)	(<i>t</i>)	(v)	φ	(x)	(y)	(1)	(v)
740 712 712 714 7	3856 3340 2959 2658	366 [.] 1 296 [.] 9 247 [.] 7 210 [.] 0	2145 1994 1864 1749	3769 3155 2768 2496	4° 56	569 682 788	18.6 27.5 37.6	630 77 I 907	821 790 763
63 61 61 61	2409 2197 2012	180.0 155.3 134.5	1644 1547 1456	2290 2129 1997	7 8 9	886 978 1065	4 ^{8·8} 60·9 73 [·] 9	1039 1167 1292	738 716 696
6 5 4	1847 1330 949	116.9 66.8 36.7	1371 1070 811	1887 1579 1385	10 11 12	1 148 1226 1 301	87.7 102.3 117.4	1413 1532 1649	678 662 647
3 2 I	648 399 186 0	18·2 7·3 1·7 0	582 373 180 0	1248 1146 1065 1000	13 14 15	1372 1441 1507	133.3 149.7 166.7	1763 1875 1986	633 620 608
		$\lambda = 3.5$;		16 17 18	15 7 0 1631 1690	184°3 202°4 221°1	2095 2203 2310	597 587 578
φ	(<i>x</i>)	(y)	(<i>t</i>)	(v)	19 20 21	1747 1803 1857	240 [.] 3 260 [.] 0 280 [.] 2	2415 2520 2623	569 561 553
730 73 73 71	4428 3669 3179	437°1 335°3 271°8	2246 2063 1915	4789 3664 3080	22 23 24	1910 1961 2012	301.0 322.2 344.0	2726 2829 2931	546 539 533
7 63 61 61	2816 2527 2288	226·4 191·6 163·7	1789 1676	2709 2445 2246	25 26 27	2061 2109 2156	366·4 389·3 412·8	3033 3134 3235	527 522 517
6 5	2083 1904 1355	140.7 121.7 68.5	1573 1478 1389 1079	2089 1961 1614	28 29 30	2202 2247 2292	436·8 461·4 486·7	3336 3438 3539	512 508 504
3 2	653 401	37 [.] 3 18 [.] 4 7 [.] 3	584 374	1403 1259 1151	31 32 33	2336 2379 2422	512.6 539.1 566.3	3641 3743 3845	500 496 493
I 0 I 2 3	186 0 165 312 446	1.6 0 1.4 5.3 11.1	180 0 170 330 483	1067 1000 944 897 856	34 35 36	2464 2506 2547	594°2 622°9 652°3	3948 4051 4156	490 487 485

IX. (continued).

	•	$\lambda = 3.2$	7				$\lambda = 3.6$)	
φ	(x)	(y)	(<i>t</i>)	(v)	φ	(x)	(y)	(<i>t</i>)	(v)
7° 634 612 612 612	3254 2832 2511 2253	273 [.] 4 222 [.] 4 185 [.] 1 156 [.] 2	1890 1753 1634 1527	3375 2882 2556 2320	$ \begin{array}{c} I \stackrel{10}{2} \\ I \\ O \stackrel{1}{2} \\ O \\ I \\ I \\ O \\ I \end{array} $	293 188 90 0	4°0 1°7 0°4 0	277 181 89 0 169	1121 1076 1036 1000
6 5 ³ 4 5 ¹ 2	2036 1850 1687	133.0 113.8 97.7	1430 1339 1254	2140 1996 1877	2 3	164 309 439	1.4 5.2 10.9	328 479	938 887 844
5 ¹ 5 4 ¹ / ₂	1541 1410 1180	84.0 72.2 53.1	1174 1098 956	1778 1693 1553	4 56	558 667 768	18·1 26·7 36·3	624 762 895	806 774 745
4 3 ¹ / ₂ 3	985 814 663	38.6 27.4 18.8	825 703 588	1444 1354 1280	7 8 9	861 949 1031	47°0 58°5 70°8	1024 1148 1269	720 697 676
$2\frac{1}{2}$ 2 $1\frac{1}{2}$	527 404 291	12·3 7·4 3·9	479 375 276	1217 1162 1114	10 11 12	1109 1182 1252	83.8 97.4 111.6	1387 1503 1615	658 641 626
	187 90	1.7 0.4 0	181 89	1072 1034 1000	13 14 15	1319 1383 1444	126 [.] 4 141 [.] 7 157 [.] 6	1726 1834 1941	612 599 587
					16 17 18	1503 1560 1615	173.9 190.7 208.0	2047 2150 2253	576 565 556
1		$\lambda = 3.6$)	1	19 20 21	1668 1719 1769	225·8 244·0 262·6	2354 2455 2555	547 539 531
φ 	(x)	(y)	(<i>t</i>)	(v)	22 23 24	1818 1865 1911	281.8 301.4 321.4	2654 2752 2850	524 517 511
61° 61 63 53	2827 2476 2202 1976	216·1 176·9 147·4 124·2	1711 1586 1476 1377	3043 2650 2379 2176	25 26 27	1956 2000 2043	342·0 363·0 384·6	2948 3045 3142	505 500 495
51 51 5	1785 1618 1471	105·3 89·7 76·4	1285 1200 1119	2018 1890 1784	28 29 30	2086 2127 2168	406.6 429.2 452.3	3239 3336 3433	490 486 482
41 4 31 32	1220 1011 831	55°5 40°0 28°2	971 835 710	1616 1488 1386	31 32 33	2208 2248 2287	476.0 500.3 525.1	3530 3627 3725	478 475 47,1
3 2½ 2	674 534 407	19 [.] 2 12 [.] 5 7 [.] 5	593 482 377	1303 1233 1173	34 35 36	2326 2364 2401	550.6 576.8 603.6	3823 3922 4022	468 465 463

IX. (continued).

	2	\ = 4 [∙] 1)	N=4'3	3	
φ	<i>(x)</i>	(y)	<i>(t)</i>	(v)	φ	(<i>x</i>)	(y)	. (t)	(v)
61° 6 $5\frac{3}{4}$ $5\frac{1}{2}$	2797 2421 2135 1904	207 [.] 3 166 [.] 9 137 [.] 4 114 [.] 6	1663 1534 1422 1321	3179 2721 2417 2196	I_{2}^{10} I O_{2}^{1} O	297 189 91 0	4°1 1°7 0°4 0	279 182 089 0	1136 1085 1040 1000
54 5 4 ² / ₄	1710 1542 1396	96.4 81.4 68.8	1228 1143 1062	2027 1891 1780	1 2 3	163 305 433	1.4 5.1 10.6	169 326 475	933 877 831
$4\frac{1}{2}$ 4 $3\frac{1}{2}$	1265 1039 849	58·2 41·4 29·0	987 846 717	1686 1536 1419	456	548 652 749 838	17.6 25.9 35.1	617 753 883	792 758 728
3 $2\frac{1}{2}$ 2	685 540 411	19 [.] 6 12 [.] 7 7 [.] 6	597 485 379	1326 1249 1184	7 8 9 10	921 999 1073	45 [.] 3 56 [.] 2 67 [.] 9 80 [.] 2	1009 1130 1248 1363	702 679 658 639
$ \begin{array}{c} I\frac{1}{2}\\ I\\ O\frac{1}{2}\\ O\end{array} $	295 188 91 0	4.0 1.7 0.4 0	278 181 89	1129 1080 1038 1000	11 12 13	1073 1142 1208	93 ^{.0} 106 [.] 4	1303 1475 1584 1691	622 606 592
		$\lambda = 4$			14 15 16	1330 1388	134.6 149.5 164.7	1797 1900 2002	579 567 556
φ	(x)	(y)	(<i>t</i>)	(v)	17 18	1443 1496 1547	180.4 196.5	2102 2201	530 546 536 528
6° 54	2737 2344	195·8 155·3	1607 1476	3272 2760	19 20 21	1596 1644 1690	213 [.] 1 230 ^{.0} 247 [.] 3	2299 2396 2492	519 512
51 51 5	2052 1819 1625	126.5 104.5 87.1	1362 1261 1169	2432 2198 2021	22 23 24	1736 1779 1822	265·1 283·3 301·9	2587 2682 2776	505 498 492
44 41 41 41	1460 1315 1186	73 ^{.0} 61 [.] 3	1083 1004 929	1881 1766 1670	25 26 27	1864 1905 1944	320°9 340°3 360°2	2870 2963 3057	486 481 476
	1070 869 697	43·I 29·8 20·1	857 724 602	1589 1456 1351	28 29 30	1984 2022 2060	380.6 401.4 422.7	3150 3243 3336	471 467 463
21 2 2	548 415	12.9 7.7	488 380	1267 1196					

		$\lambda = 4.5$	5				$\lambda = 4.7$	7	
\$	<i>(x)</i>	()	(1)	(v)	φ	(x)	(y)	(1)	(7')
5 ^{32°} 5 ¹ 5 ¹ 5 ¹ 5 4 ³	2641 2244 1953 1722 1532	181.4 142.2 114.8 94.1 77.8	1544 1412 1299 1198 1107	3310 2764 2422 2182 2002	I ¹⁰ I O ¹ 2 O I 2	301 191 91 0 162 302	4.1 1.7 0.4 0 1.4 5.0	280 182 89 0 168 324	1152 1094 1044 1000 927 868
41 44 4 34 31 32	1 370 1 228 1 103 991 889	64.7 53.9 44.9 37.2 30.8	943 869 799 732	1860 1744 1648 1567 1495	3 4 5 6	426 538 639 731	10.4 17.2 25.1 34.0	472 611 745 872	820 779 743 713
3 2 <u>1</u> 2	709 554 419	20°5 13°1 7°8	607 491 382	1 378 1 285 1 208	7 8 9 10	816 896 970 1039	43.7 54.2 65.2 76.9	995 1114 1228 1340	686 662 641 622
I I 0 2 0	299 190 91 0	4'I 1'7 0'4 0	279 182 89 0	1144 1089 1042 1000	11 12 13 14	1105 1167 1226 1282	89.0 101.7 114.8 128.3	1449 1555 1659 1761	605 589 575 562
		$\lambda = 4.7$	7		15 16	1336 1388	142°2 156°5	1861 1960	550
φ	(x)	(y)	(1)	(v)	17 18 19	1437 1485 1531	171 ^{.2} 186 [.] 3	2057 2153 2247	528 519 510
51° 54 5	2515 2125 1841	165°0 128°3 102°7	1474 1343 1232	3286 2733 2389	20 21 22	1576 1619	217.6 233.7 250.3	2341 2434 2526	502 494 487
43	1618	83 ^{.6} 68 ^{.7}	1133	2149 1969	23 24	1 702 1 742	267·2 284·5	2617 2708	481 475
4 ¹ 4 3 ³	1276 1140 1019	56·7 46·8 38·6	960 882 809	1828 1714 1618	25 26 27	1781 1819 1856	302°2 320°3 338°8	2799 2889 2979	469 464 459
3 ¹ / ₂ 3 ¹ / ₃	910 812 722	31.8 26.0 21.0	740 675 612	1537 1467 1406	28 29 30	1892 1928 1963	357 · 7 377 · 1 396·8	3068 3158 3248	454 450 446
21/2	562 423	13.3 7.9	494 384	1304 1221					

IX. (continued).

		$\lambda = 4.5$)			2	<i>ر</i> = 2.1				
ø	(x)	(بر)	(<i>t</i>)	(v)	φ	(x)	(y)	(<i>t</i>)	(v)		
5 ^{1°} 5 4 ¹ / ₄	2362 1991 1720	147 [.] 2 113 [.] 9 90 [.] 7	1399 1271 1162	3205 2668 2335	4° 5 6	528 625 714	16·8 24·5 33·0	606 737 862	766 729 698		
4 ¹ / ₂ 4 ¹ / ₄ 4	1506 1330 1180	73 [.] 4 59 [.] 9 49 [.] 1	1065 977 896	2101 1926 1788	7 8 9	796 872 942	42°3 52°3 62°8	982 1098 1210	671 647 625		
3 3 3 <u>3</u> 3 <u>4</u>	1049 934 830	40°2 32°9 26°8	820 749 682	1677 1584 1505	10 11 12	1008 1071 1129	73 [.] 9 85 [.] 4 97 [.] 4	1319 1425 1529	606 589 573		
$3_{2\frac{1}{2}}_{2}$	735 570 427	21.6 13.6 8.0	617 497 386	1436 1323 1234	13 14 15	1185 1238 1289	109 [.] 8 122 [.] 5 135 [.] 6	1630 1729 1826	559 546 533		
$I\frac{1}{2}$ I $O\frac{1}{2}$	303 191 91	4 ^{•2} 1 ^{•7} 0 [•] 4	. 281 183 89	1160 1098 1046	16 17 18	1338 1384 1429	149°1 163°0 177°1	1922 2016 2109	522 512 503		
0	0	0	0	1000	19 20 21	1473 1515 1555	191.6 206.5 221.7	2201 2291 2381	494 486 479		
	1	$\lambda = 5.1$	[22 23 24	1595 1633 1670	237°2 253°0 269°2	2470 2559 2647	472 465 459		
φ	(x)	(y)	(<i>t</i>)	(v)	$\lambda = 5.3$						
5° 44 41 42	2192 1848 1594	129°0 99°6 79°0	1319 1196 1090	3076 2578 2263	φ	(x)	(׳׳)	(<i>t</i>)	(v)		
44 4 3 ³	1393 1226 1084	63 ^{.6} 51 ^{.5} 41 ^{.9}	996 911 832	2041 1874 1742	5° 4 ³ 4 ¹ 4 ¹	2485 2011 1698	151.8 111.3 85.9 67.9	1380 1236 1119 1018	3756 2919 2470 2180		
3 ¹ / ₂ 3 ¹ / ₄	959 849	34°0 27°5	758 689	1634 1545	4 ¹ 4	1464 1276	54.4	927 845	1973		
$3 \\ 2\frac{1}{2} \\ 2$	750 578 432	22°1 13°8 8°1	623 501 388	1468 1344 1247	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
11 1 01	305 192 92	4°2 1°7 0°4	282 183 89	1169 1103 1048	3 2½ 2	765 586 436	22.7 14.1 8.2	629 504 390	1502 1366 1261		
0 I 2 3	0 161 299 420	0 1'4 5'0 10'2	0 167 323 468	1000 921 859 808	$I \frac{1}{2}$ $I \\ O \frac{1}{2}$ O	307 193 91 0	4 ^{.2} 1.7 0.4 0	283 183 89 0	1177 1108 1050 1000		

		$\lambda = 5.5$;			2	$\lambda = 5.7$,	
φ	(x)	(")	(1)	(v)	φ	(<i>x</i>)	(y [,])	<i>(t)</i>	(v)
44 44 42 44 44 4	2238 1828 1547 1333	127 [.] 8 94 [.] 6 73 [.] 1 57 [.] 7	1287 1153 1042 945	3443 2746 2352 2089	$4\frac{10}{4\frac{1}{4}}$ $4\frac{1}{4}$ $4\frac{3}{3\frac{3}{4}}$	2001 1650 1401 1207	106·4 79·5 61·5 48·4	1193 1069 965 873	3143 2572 2229 1995
34 31 34 34	1161 1016 891	46.0 36.7 29.4	858 778 704	1899 1753 1636	3 ¹ / ₂ 3 ¹ / ₄ 3	1049 915 799	3 ^{8·3} 30·4 24·1	790 713 642	1822 1688 1579
$3 \\ 2\frac{1}{2} \\ 2$	781 595 440	23 [.] 4 14 [.] 4 8 [.] 3	635 508 391	1539 1389 1275	$2\frac{3}{4}$ $2\frac{1}{2}$ 2	696 604 445	18·9 14·7 8·4	575 511 394	1489 1413 1290
I 1 0 2 0 I	309 194 92 0 160	4'3 1'8 0'4 0 1'4	284 184 90 0 167	1186 1113 1052 1000 916	$ I \frac{1}{2} \\ I \\ O \frac{1}{2} \\ O $	311 195 92 0	4°3 1'8 0'4 0	285 184 90 0	1194 1118 1054 1000
2 3	296 414	4'9 10'0	321 465	850 798			$\lambda = 5.6$)	
4 5 6	519 613 699	16·4 23·8 32·0	600 729 852	754 716 684	φ	(x)	(y)	(<i>t</i>)	(v)
7 8 9	777 850 917	41.0 50.2 60.6	969 1083 1192	657 632 611	4 ^{1°} 4 ¹ 4	2247 1780 1480	123.6 87.7 66.1	1244 1101 987	3782 2867 2402
IO I I I2	980 1039 1095	71·1 82·1 93·4	1299 1402 1503	591 574 558	3 ³ 3 ¹ / ₂ 3 ¹ / ₂	1259 1085 940	51·1 40·1 31·5	889 801 722	2108 1901 1745
13 14 15	1148 1198 1247	105°2 117°3 129°7	1601 1698 1792	544 531 519	3 2 ³ / ₄ 2 ¹ / ₂	817 709 614	24 [.] 8	648 580 515	1622 1521 1438
16 17 18	1293 1337 1379	142.5 155.5 168.9	1885 1977 2067	508 498 488	$\frac{1}{2}$	450	15.0 8.6 4.4	395 286	1305
19 20 21	1420 1459 1497	182.6 196.5 210.8	2156 2244 2331	480 472 464	I 0 1 0 1 2	195 92 0 159 293	1.8 0.4 0 1.3 4.8	185 90 0 166 319	1122 1056 1000 911 842
22 23 24	1535 1571 1606	225 [.] 4 240 [.] 3 255 [.] 5	2418 2503 2589	457 451 445	3 4 56	408 510 601 683	9.8 16.0 23.2 31.1	461 595 721 842	787 742 704 671

IX. (continued).

		$\lambda = 5.9$)				$\lambda = 6$	3	
φ	(x)	(y)	(<i>t</i>)	(v)	φ	(x)	(y)	(<i>t</i>)	(v)
7° 8 9 10	759 828 893 953	39 ^{.7} 48 ^{.8} 5 ^{8.5}	957 1068 1176 1279	643 619 597 577	4° 34-12-14 3° 34-12-14 3° 34-12-14 3° 34-12-14	1693 1388 1170 998 857	78.8 58.1 44.2 34.1 26.4	1041 925 827 741 662	2916 2406 2094 1879 1719
11 12 13 14	1009 1062 1113 1161	79°3 89°8 101°0 112°4	1380 1479 1575 1668	560 544 530 517	2 2 1 2 1 2 2 2 2	738 634 460	20°4 15°7 8°8	590 523 400	1594 1493 1337
15 16 17 18	1206 1250 1291 1332	124 [.] 2 136 [.] 3 148 [.] 7 161 [.] 3	1761 1851 1940 2028	505 494 484 475	I ¹ 2 I O ¹ 2 O I 2	318 197 92 0 158 289	4'4 1'8 0'4 0 1'3 4'7	288 186 90 0 166 318	1222 1132 1060 1000 906 834
19 20 21 22 23	1370 1408 1444 1479 1513	174.3 187.5 201.0 214.7 228.8	2115 2200 2285 2369 2452	466 458 451 444 438	3 4 5 6	402 501 590 669	9.7 15.7 22.6 30.3	458 590 714 833	777 731 692 659
24	1546	$\lambda = 6.1$	2535	432	7 8 9 10	742 808 870 928	38·5 47·3 56·5 66·2	946 1055 1160 1261	631 606 584 565
φ	(x)	<i>(y)</i>	(<i>t</i>)	(v)	11 12 13	982 1033 1081	76•2 86•5 97•1	1360 1456 1550	547 532 517
44° 4 3 ³	1949 - 1574 1319	98·7 71·7 54·3	1140 1012 906	3296 2622 2242	14 15 16 17	1126 1169 1211 1250	108.0 119.2 130.7 142.5	1642 1731 1820 1906	504 493 482 472
3 ¹ / ₂ 3 ¹ / ₃ 3	1125 968 836 723	42.0 32.8 25.6	814 731 655 585	1990 1808 1668 1556	17 18 19 20 21	1289 1325 1361 1395	154.5 166.8 179.3 192.1	1992 2076 2160 2242	463 454 446 439
2 ¹ / ₂ 2 I I 0 ¹ / ₂ 0	624 455 316 196 92 0	15·3 8·7 4·4 1·8 0·4 0	519 398 287 185 90 0	1465 1321 1213 1127 1058 1000	22 23 24	1428 1460 1491	205°1 218°4 232°0	2324 2405 2486	432 426 419

		$\lambda = 6.2$	7				$\lambda = 7.1$	[
φ	(x)	(3')	(<i>t</i>)	(v)	φ	(x)	(y)	(<i>t</i>)	(v)
4° 34 31 32	2073 1574 1279	102°5 68°5 49°8	1119 972 859	4019 2880 2362	7° 8 9	711 772 829	36·4 44·5 53·0	924 1029 1130	608 5 ⁸ 3 561
3 3 2 2	1068 905 770	37 [.] 3 28 [.] 4 21 [.] 6	763 678 602	2049 1836 1678	10 11 12	882 932 978	61.9 71.1 80.5	1227 1322 1414	542 524 509
$2\frac{1}{2}$ $2\frac{1}{4}$ 2	657 558 471	16.4 12.3 9.1	531 466 404	1554 1455 1372	13 14 15	1022 1064 1103	90.3 100.2 110.5	1503 1591 1677	494 482 470
$ \begin{array}{c} \mathbf{I} \frac{1}{2} \\ \mathbf{I} \\ \mathbf{O} \frac{1}{2} \\ \mathbf{O} \end{array} $	323 199 93 0	4 ^{.5} 1 ^{.8} 0 [.] 4 0	290 186 90 0	1242 1143 1064 1000	16 17 18	1141 1177 1212	120'9 131'6 142'5	1761 1844 1925	460 450 441
		$\lambda = 7.1$	L		19 20 21	1245 1277 1308	153.6 164.9 176.5	2006 2085 2163	432 425 418
φ	(x)	(y)	(<i>t</i>)	(v)	22 23 24	1338 1367 1395	188·3 200·3 212·6	2241 2318 2394	411 405 399
3 ³⁰ 3 ¹ / ₂ 3 ¹ / ₂	1887 1431 1157	86·7 57·7 41·5	1039 898 789	3826 2769 2278			$\lambda = 7.5$	5	
$3 \\ 2\frac{3}{4} \\ 2\frac{1}{3}$	961 807 682	30 ^{.7} 23 ^{.0} 17 ^{.2}	696 614 540	1981 1776 1624	φ	(x)	<i>(y)</i>	(<i>t</i>)	(v)
2 2 1 1	575 482 327 201	17 2 12·8 9·4 4·6 1·8	472 408 292	1505 1409 1262	3 ¹⁰ 3 ¹ 3 ¹ 3 ¹	1667 1274 1029	70°4 47°0 33°6	951 820 717 628	3499 2606 2167
I 0 ¹ / ₂ 0 I 2	93 0 156 284	0.4 0 1.3 4.6	187 90 165 314	1153 1068 1000 895 818	24 24 21 21 21 2 4 2	850 710 594 495	24.6 18.2 13.4 9.7	550 479 413	1895 1704 1562 1450
3 4 56	392 486 569 643	9'3 15'0 21'6 28'7	452 580 701 815	758 710 670 637	11/2 1 01/2 0	333 202 94 0	4.7 1.9 0.4 0	294 188 90 0	1284 1164 1073 1000

IX. (continued).

IX. (continued).

		$\lambda = 7.9$)				$\lambda = 8 \cdot 3$	3	
φ	(x)	(ינ)	(1)	(v)	φ	(x)	(y)	(1)	(v)
34° 3 23	1442 1115 901	55 ^{.5} 37 [.] 4 26 ^{.6}	860 741 644	3131 2418 2040	$3^{\circ}_{2\frac{3}{4}}_{2\frac{1}{2}}$	1230 962 777	42.5 29.0 20.5	771 663 573	2781 2226 1909
$2\frac{1}{2}$ $2\frac{1}{4}$ 2	741 614 508	19 [.] 3 14 [.] 0 10 [.] 0	561 486 418	1798 1625 1495	$2\frac{1}{4}$ 2 $1\frac{3}{4}$	636 522 426	14 ^{.7} 10 [.] 4 7 [.] 3	494 424 359	1697 1544 1425
$ \begin{bmatrix} I \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 2 \\ 3 $	338 204 94 0 154 278 382	4.8 1.9 0.4 0 1.3 4.5 9.0	297 189 91 0 164 311 446	1307 1175 1077 1000 885 803 741	I ¹ / ₂ I O ¹ / ₂ O	344 206 94 0	4'9 1'9 0'4 0	299 189 91 0	1331 1187 1081 1000
4 5 6	471 549 619	14 [.] 4 20 [.] 6 27 [.] 3	571 688 799	691 650 616			λ=8.3	7	
7 8 9	682 740 793	34°5 42°1 50°0	905 1006 1103	587 562 540	¢	(x)	(y)	(1)	(v)
10 11 12	842 888 931	58·2 66·7 75 [.] 4	1197 1288 1376	521 504 488	$3^{\circ}_{2\frac{3}{4}}_{2\frac{1}{2}}$	1401 1039 820	50°4 32°1 22°0	809 684 586	3399 2473 2043
13 14 15	971 1009 1046	84·3 93·5 102·9	1462 1546 1628	474 462 450	$2\frac{1}{4}$ 2 $1\frac{3}{4}$	662 538 436	15.4 10.8 7.5	503 430 363	1780 1598 1462
16 17 18	1080 1113 1145	112.5 122.3 132.3	1709 1788 1866	440 430 421	$ I \frac{1}{2} I O \frac{1}{2} O $	349 208 95 0	5.0 1.9 0.4 0	301 190 91 0	1356 1199 1086 1000
19 20 21	1175 1205 1233	142 [.] 4 152 [.] 8 163 [.] 4	1943 2019 2094	313 406 399	I 2 3	153 273 373	1·3 4·4 8·7	163 308 440	876 789 724
22 23 24	1260 1287 1312	174°1 185°1 196°2	2168 2241 2315	392 386 381	4 56	458 532 598	13.9 19.7 26.0	562 676 784	673 632 597

		$\lambda = 8 \cdot 2$	7				$\lambda = 9.3$	5	
φ	(x)	(y)	<i>(t)</i>	(v)	φ	(x)	(ינ)	(<i>t</i>)	(v)
7° 8 9	657 711 760	32·8 39·9 47·3	886 984 1078	568 543 522	2 ³⁰ 2 ¹ 2 2 ¹ 2 2 ¹ 4	1287 932 723	42 ^{.5} 26 ^{.1} 17 [.] 3	742 618 523	3394 2426 1989
10 11 12	806 848 883	54°9 62°8 70°9	1169 1256 1342	502 486 470	2 I ³ I ¹ / ₂	573 457 362	11.8 8.0 5.3	442 371 307	1725 1545 1411
13 14	926 961	79·2 87·7 96·4	1424 1505 1584	456 444	$ I \\ 0\frac{1}{2} \\ 0 $	212 95 0 151	2.0 0.4 0	192 91 0 162	1223 1095 1000 867
15 16 17	995 1027 1057	105°2 114°3	1504 1662 1738 1813	433 423 413	і 2 3	268 364	1.3 4.3 8.4	305 434	776 70S
18 19 20	1086 1114 1141	123·5 132·8 142·4	1813 1887 1959	405 397 389	4 5 6	445 515 578	13.4 18.9 24.9	554 665 770	657 615 580
2I 22	1167 1193	152°1 162°0	2031 2102	383 376	7 8 9	633 684 731	31·3 37·9 44·8	869 964 1055	551 527 505
23 24	1217 1240	172°1 182°3	2173 2243	370 365	10 11 12	773 813 850	52°0 59°4 66°9	1142 1227 1309	486 469 454
		$\gamma = 0.1$	[13 14	885 918	74°7 82°6	1389 1467	441 428
φ	(x)	(y)	(<i>t</i>)	(v)	15 16	949 979	90°6 98°9	1544 1618	418
230 24 212	1141 870	36·3 23·8	710 601	2827 2210	17 18	1007 1034	107.3	1692 1764	398 390
21 2 13 14	690 555 446	16·3 11·3 7·7	513 436 367	1876 1658 1502	19 20 21	1060 1085 1109	124·5 133·3 142·3	1835 1905 1974	382 375 368
I 1 0 2 0	356 210 95 0	5°2 2°0 0°4 0	304 191 91 0	1383 1211 1090 1000	22 23 24	1133 1155 1177	151 ·5 160·8 170·3	2042 2110 2177	362 356 351

IX. (continued).

		$\gamma = 0.$)				$\gamma = 10$	• 3	
ø	(x)	(٢)	(1)	(v)	ø	(x)	('')	(1)	(v)
2 ¹⁰ 2 ¹ / ₂ 2	1011 761 594	29 ^{.0} 18 ^{.6} 12 [.] 4	639 534 449	2722 2125 1802	1° 2 3	149 263 355	1.2 4.2 8.2	161 302 429	857 763 694
134 13 11	469 369 286	8·3 5·4 3·4	375 309 249	1592 1442 1327	4 56	433 500 559	12·9 18·2 23·9	546 654 756	642 599 565
I 0 ³ / ₄ 0 ¹ / ₂ 0	214 152 96 0	2.0 1.0 0.4 0	193 141 91 0	1236 1162 1100 1000	7 8 9	612 660 703	29 [.] 9 36 [.] 1 42 [.] 7	853 945 1033	536 511 490
		$\lambda = 10$	•3		10 11 12	744 781 816	49 [.] 4 56 [.] 3 63 [.] 4	1118 1200 1280	471 454 440
φ	(x)	(y)	(<i>t</i>)	(v)	13 14 15	849 879 909	70 [.] 6 78 [.] 0 85 [.] 6	1357 1432 1506	426 414 403
2 ¹⁰ 2 ¹ / ₄ 2	1118 805 617	33°1 20°0 13°0	663 547 457	3161 2293 1889	16 17 18	936 963 988	93.3 101.1 109.0	1578 1649 1719	394 385 376
194 192 112	482 376 290	8.6 5.6 3.5	380 312 251	1644 1474 1348	19 20 21	1012 1035 1058	117°1 125°4 133°8	1787 1855 1922	369 362 355
I 034 012	216 153 96	2°0 1°1 0°4	194 141 92	1250 1170 1104	22 23 24	1079 1100 1121	142°3 150°9 159°8	1988 2053 2118	349 344 338
I 034	290 216 153	3.2 2.0 1.1	251 194 141	1348 1250 1170	22 23	1079 1100	142°3 150°9	1988 2053	34 34

Х.

ł	I	0	0	0	÷	v	2 .	
---	---	---	---	---	---	---	------------	--

v	0	I	2	3	4	5	6	7	8	9	
<i>f. s.</i> 10 11 12	100°00 82°64 69°44	98.03 81.16 68.30	96·12 79·72 67·19	94 [.] 26 78 [.] 31 66 [.] 10	92:46 76:95 65:04	90.70 75.61 64.00	89.00 74.32 62.99	87·34 73·05 62·00	85.73 71.82 61.04	84°17 70°62 60°09	- 1·76 1·33 1·04
13	59 ·17	58·27	57°39	56·53	55 ^{.69}	54 ^{.8} 7	54°07	53.28	52°51	51·76	•83
14	51·02	50·30	49°59	48·90	48 ^{.23}	47 [.] 56	46°91	46.28	45°65	45·04	66
15	44·44	43·86	43°28	42·72	42 ^{.17}	41 ^{.62}	41°09	40.57	40°06	39·56	54
16	39 · 06	38·58	38.10	37 ^{.6} 4	37·18	36.73	36·29	35 [.] 86	35 [.] 43	35.01	45
17	34·60	34·20	33.80	33 ^{.41}	33·03	32.65	32·28	31 [.] 92	31 [.] 56	31.21	38
18	30·86	30·52	30.19	29 ^{.86}	29·54	29.22	28·91	28 [.] 60	28 [.] 29	28.00	32
19	27.70	27:41	27.13	26·85	26·57	26·30	26.03	25.77	25.51	25 [.] 25	27
20	25.00	24:75	24.51	24·27	24·03	23·80	23.57	23.34	23.11	22 [.] 89	23
21	22.68	22:46	22.25	22·04	21·84	21·63	21.43	21.24	21.04	20 [.] 85	20
22	20.66	20·48	20·29	20 ·11	19.93	19.75	19 [.] 58	19:41	19 [.] 24	19 ^{.07}	18
23	18.90	18·74	18·58	18·42	18.26	18.11	17 [.] 96	17:80	17 [.] 65	17 ^{.51}	15
24	17.36	17·22	17·08	16·94	16.80	16.66	16 [.] 53	16:39	16 [.] 26	16 ^{.13}	14
25	16.00	15 [.] 87	15.75	15 ^{.62}	15.20	15·38	15·26	15 [.] 14	15 [.] 02	14.91	12
26	14.79	14 [.] 68	14.57	14.46	14.35	14·24	14·13	14 [.] 03	13 [.] 92	13.82	11
27	13.72	13 [.] 62	13.52	13.42	13.32	13·22	13·13	13 [.] 03	12 [.] 94	12.85	10
28	1 2.755	2·664	2·575	2·486	2·398	2 [.] 311	2·226	2°140	2.056	1·973	87
29	1.891	1·809	1·728	1·648	1·569	1.491	1·413	1°337	1.261	1·186	78
30	1.111	1·037	0·964	0·892	0·821	0.750	0·680	0°610	0.541	0·473	71
31	1 0·406	0 [.] 339	0 [.] 273	0 ^{.207}	0·142	0°078	0 ^{.014}	*9 [.] 951	*9·889	*9 [.] 827	64
32	9·766	9 [.] 705	9 [.] 645	9 ^{.585}	9·526	9°467	9 ^{.409}	9 [.] 352	9·295	9 [.] 239	59
33	9·183	9 [.] 127	9 [.] 072	9 ^{.018}	8·964	8°91 I	8 ^{.858}	8 [.] 805	^{8·7} 53	8 [.] 702	53
34	8.651	8.600	8.220	8·500	8·451	8·402	8·353	8·305	8·257	8·210	49
35	8.163	8.117	8.071	8·025	7·980	7·935	7·890	7·846	7·803	7·759	45
36	7.716	7.673	7.631	7·589	7·547	7·506	7·465	7·425	7·384	7·344	41
37	7·305	7·265	7·226	7·188	7·149	7 ·111	7:073	7:036	6·999	6·962	38
38	6·925	6·889	6·853	6·817	6·782	6·746	6:711	6:677	6·643	6·608	35
39	6·575	6·541	6·508	6·475	6·442	6 · 409	6:377	6:345	6·313	6·281	33
40	6·250	6·219	6·188	6·157	6·127	6.097	6.067	6 ^{.0} 37	6·007	5·978	30
41	5·949	5·920	5·891	5·863	5·834	5.806	5.778	5 ^{.751}	5·723	5·696	28
42	5·669	5·642	5·615	5·589	5·562	5.536	5.510	5 ^{.485}	5·459	5·434	26
43	5·408	5·383	5·358	5°334	5·309	5·285	5·260	5·236	5·213	5·189	24
44	5·165	5·142	5·119	5°096	5·073	5·050	5·027	5·005	4·982	4·960	23
45	4·938	4·916	4·895	4°873	4·852	4·830	4·809	4·788	4·767	4·747	21
46	4.726	4.705	4.685	4.665	4.645	4.625	4.605	4·585	4·566	4°546	20
47	4.527	4.508	4.489	4.470	4.451	4.432	4.414	4·395	4·377	4°358	19
48	4.340	4.322	4.304	4.287	4.269	4.251	4.234	4·216	4·199	4°182	18

	1	1	1	1	1	1	1				
21	0	I	2	3	4	5	6	7	8	9	Δ
<i>f. s.</i> 49 50 51	4.165 4.000 3.845	4·148 3·984 3·830	4.131 3.968 3.815	4.114 3.952 3.800	4.098 3.937 3.785	4.081 3.921 3.770	4.065 3.906 3.756	4.048 3.890 3.741	4.032 3.875 3.727	4.016 3.860 3.713	 17 16 15
52	3.698	3.684	3.670	3.656	3·642	3·628	3.614	3.601	3.587	3°574	14
53	3.560	3.547	3.533	3.520	3·507	3·494	3.481	3.468	3.455	3°442	13
54	3.429	3.417	3.404	3.392	3·379	3·367	3.354	3.342	3.330	3°319	12
55	3°3058	·2938	•2819	•2700	•2582	•2464	·2348	·2232	·2117	•2001	117
56	°1888	·1774	•1662	•1549	•1437	•1325	·1215	·1105	·0996	•0887	111
57	°0779	·0671	•0564	•0457	•0351	•0245	·0140	·0036	*·9933	*•9829	106
58	2·9727	•9624	•9523	·9421	•9320	•6220	•9121	•9022	·8923	·8825	100
59	·8727	•8630	•8534	·8437	•8341	•8246	•8152	•8058	·7964	·7871	95
60	·7778	•7685	•7594	·7502	•7411	•7320	•7230	•7141	·7052	·6963	91
61	2·6875	•6787	·6699	•6612	·6525	·6439	•6353	•6268	•6183	•6099	86
62	·6015	•5931	·5848	•5765	·5682	·5600	•5518	•5437	•5356	•5276	82
63	·5195	•5116	·5036	•4957	·4878	·4800	•4722	•4645	•4568	•4491	78
64	2°4414	·4338	·4262	·4187	•4111	•4037	*3962	·3889	·3815	·3742	75
65	*3669	·3596	·3524	·3452	•3380	•3308	*3237	·3167	·3097	·3027	71
66	*2957	·2887	·2818	·2750	•2681	•2613	*2545	·2477	·2410	·2343	67
67	2°2277	·2210	•2144	·2078	•2013	•1948	•1883	•1818	•1754	•1690	65
68	°1626	·1562	•1500	·1437	•1374	•1312	•1249	•1188	•1126	•1065	62
69	°1004	·0943	•0883	·0822	•0762	•0703	•0643	•0584	•0525	•0467	60
70	2°0408	•0350	•0292	•0234	•0177	•0120	•0063	•0006	*•9950	*•9893	57
71	1°9837	•9782	•9726	•9671	•9616	•9561	•9506	•9452	•9398	*9344	55
72	°9290	•9237	•9184	•9130	•9077	•9025	•8972	•8920	•8869	•8817	53
73	1·8765	·8714	·8663	·8612	·8561	·8511	•8460	•8410	•8361	•8311	50
74	·8262	·8212	·8163	·8114	·8066	·8017	•7969	•7921	•7873	•7825	49
75	·7778	·7730	·7683	·7636	·7590	·7543	•7497	•7450	•7405	•7359	47
76	1.7313	•7268	·7224	•7177	•7132	•7087	•7043	·6998	•6954	•6910	45
77	.6866	•6823	·6779	•6736	•6692	•6649	•6606	·6564	•6521	•6479	43
78	.6437	•6395	·6353	•6311	•6269	•6228	•6186	·6145	•6105	•6064	42
79	1.6023	•5983	•5942	•5902	·5862	•5822	•5782	•5743	•5704	•5664	40
80	.5625	•5586	•5547	•5508	·5470	•5431	•5393	•5355	•5317	•5279	38
81	.5242	•5204	•5167	•5129	·5092	•5055	•5018	•4982	•4945	•4908	37
82	1·4872	•4836	•4800	•4764	•4728	•4692	•4657	•4621	•4586	•4551	36
83	·4516	•4481	•4446	•4412	•4377	•4342	•4308	•4274	•4238	•4206	34
84	·4172	•4139	•4105	•4072	•4038	•4005	•3972	•3939	•3906	•3873	33
85	1·3841	•3808	·3776	·3744	•3711	•3679	•3647	·3616	·3584	•3552	32
86	·3521	•3489	·3458	·3427	•3396	•3365	•3334	·3303	·3273	•3242	31
87	·3212	•3181	·3151	·3121	•3091	•3061	•3031	·3002	·2972	•2943	30
										1	

1											
v	0	I	2	3	4	5	6	7	8	9	
J. s. 88			0	0.0		0				6	-
	1.5013	•2884	.2855	•2826	*2797	.2768	.2739	.2710	*2682	.2653	29
89	2625	·2596	•2 568	*2540	.2512	•2484	•2456	*2428	°2401	2373	28
90	·2346	2318	·2291	•2264	2237	2210	2183	.2156	'2129	2102	27
		5-						5			1
91	1.2076	·2049	·2023	•1997	.1970	•1944	.1018	.1895	•1866	.1840	26
92	.1812	•1789	•1764	•1738	1713	•1687	•1662	.1632	.1015	1587	25
93	1562	•1537	•1513	•1488	•1463	•1439	1414	.1390	•1366	1341	25
94	1.1312	.1293	.1269	1245	·1222	.1108	1174	1151	1127	1104	24
95	.1080	.1057	1034	1011	·0988	.0965	.0942	0919	·0896	·0873	23
96	.0851	.0828	·0806	.0783	.0761	·0738	.0716	.0694	.0672	.0650	22
90	0051	0020	0000	0/03	0/01	0/30	0/10	0094	00/2	0050	-2
		1.000									
97	1.0658	•0606	*0584	·0563	°0541	.0210	·0498	.0476	*0455	°0434	22
98	°0412	·0391	.0370	·0349	.0328	.0302	·0286	.0265	'0244	.0224	21
99	.0203	.0182	10161	.0141	'0121	1010	·0080	·co60	.0040	*0020	20
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
100	1.0000	*.9980	*.9960	*-9940	*.9920	*•9901	*.9881	* .9861	* . 9842	*.9822	20
IOI	0.9803	•9783	.9764	*9745	.9725	·9707	• 9688	·9668	•9649	•9631	19
102	.9612	.9593	'9574	*9555	.9537	.9218	.9500	·9481	•9463	.9444	19
103	0.9426	.9408	.9389	°9371	.9353	.9335	.9317	·9299	·9281	.9263	18
104	.92.46	.9228	.9210	·9192	.9175	·9157	.9140	.9124	.9105	·90S8	18
		-									
105	.9070	*9053	•9036	.9019	·9002	·8985	•\$968	.8951	*8934	.8917	17
		000	0011								
106	0 8900	·8883	·8866	·8850	·8833	·8817	·\$\$00	·8784	8767	·8751	17
107	·8734	·8718	.8702	·\$686	·8669	.8653	.8637	.8621	.8605	.8589	16
108	.8573	8558	.8542	.8526	.8510	•8495	.8479	.8463	.8448	.8432	16
	- 575	-35-	-54-	0,20	0,.0	0495	04/5	- toj	UTT.	-43-	
109	0.8417	·\$401	·8386		.Qarr	.0.10	18225	.8310	.8295	·8280	
1 .				.8371	*8355	.8340	.8325	.8310			15
110	.8264	.8249	.8234	.8220	.8205	.8190	.9172	.8160	-8146	.8131	15
III	.8119	.8102	8087	.8073	•3058	·2044	.8029	·8015	*8000	.7986	14
					-						
112	0.7972	.7958	.7944	.7929	.7915	.7901	.7887	.7873	.7859	•7845	14
113	.7831	.7818	.7804	.7790	.7776	.7763	.7749		.7722	.7708	14
								.7735			
114	•7695	.7681	.7668	.7654	.7641	•7628	.7614	.7601	.7588	7575	13
115	0.2201	.7548	7535	.7522	.7509	.7496	.7483	.7470	*7457	7444	13
116	.7432	7419	.7400	.7393	.7381	.7368	.7355	7343	7330	.7318	13
117	.7305	.7293	.7280	.7268	.7255	.7243	.7231	.7219	7206	.7194	12
					1 35	1.15	1			1	
118	0.7182	.7170	.7158	.7145	.7133	.7121	.7109	.7097	.7085	.7074	12
119	.7062	1									
		.7050	.7038	.7026	.7014	•7003	*6991	.6979	•6968	•6956	12
120	.6944	.6933	.6921	•6910	•6898	·6887	.6876	·6864	.6853	·6841	12
	10	10									
121	0.6830	.6819	•6SoS	.6796	•6785	.6774	.6763	.6752	.6741	.6730	II
122	.6719	.5708	.6697	.6686	.6675	.6661	.6653	.6042	.6631	.6621	II
123	.6610	.6592	.6588	.6578	.6567	.6556	.6546	.6535	.6525	.6514	II
	00.0	10000	0,00	0370	0301	0330	0340	0333	03-5	0314	
122	0.650	1.6.00	16.00	.6.120	.6.6.	.6.00		.6.0-	.6.00	.6.20	-
124	0.6504	.6493	.6483	•6472	•6462	.6452	.6441	.6431	.6421	.6410	IO
125	.6400	.6390	.6380	.6369	.6359	•6349	.6339	.6329	.6319	.6309	IO
126	•6299	.6289	.6279	.6269	.6259	.6249	.6239	•6229	.6220	.6210	IO
1		1	1		1		1		-		1
				and the second s							

υ	0	I	2	3	4	5	6	7	8	9	Δ
<i>f. s.</i> 127 128 129	0.6200 .6104 .6009	*6190 *6094 *6000	·6181 ·6084 ·5991	·6171 ·6075 ·5981	•6161 •6066 •5972	•6151 •6056 •5963	·6142 ·6047 ·5954	•6132 •6037 •5945	•6123 •6028 •5935	·6113 ·6019 ·5926	- 10 9 9
130	0 [.] 5917	·5908	·5899	·5890	·5881	•5872	·5863	·5854	•5 ⁸ 45	•5836	9
131	.5827	·5818	·5809	·5801	·5792	•5783	·5774	·5765	•5757	•5748	9
132	.5739	·5731	·5722	·5713	·5705	•5696	·5687	·5679	•5670	•5662	9
133	0 [.] 5653	·5645	·5636	·5628	•5619	·5611	·5603	·5594	·5586	·5577	8
134	.5569	·5561	·5553	·5544	•5536	·5528	·5520	·5511	·5503	·5495	8
135	.5487	·5479	·5471	·5463	•5455	·5447	·5439	·5431	·5423	·5415	8
136	0°5 4066	3986	3907	3828	3749	3670	3592	3513	3435	3357	79
137	3279	3202	3124	3047	2970	2893	2816	2739	2663	2586	77
138	2510	2434	2359	2282	2207	2132	2056	1981	1906	1832	75
139	0°5 1757	1683	1608	1534	1461	1387	1313	1240	1166	1093	74
140	1020	0947	0875	0802	0730	0658	0586	0514	0442	0370	72
141	0299	0228	0157	0086	0015	*9944	*9874	*9804	*9733	*9663	71
142	0 [.] 4 9593	9524	9454	9384	9314	9246	9177	9108	9039	8971	70
143	8902	8834	8766	8698	8631	8562	8494	8427	8360	8292	68
144	8225	8158	8092	8025	7959	7892	7826	7760	7694	7628	66
145	0°4 7562	7497	7432	7366	7301	7236	7171	7106	7042	6977	65
146	6913	6849	6785	6721	6657	6593	6530	6466	6403	6340	64
147	6277	6215	6152	6089	6026	5964	5901	5839	5777	5716	62
148	0°4 5652	5592	5531	5469	5408	5347	5286	5225	5164	5104	61
149	5043	4983	4922	4862	4802	4742	4682	4623	4563	4504	60
150	4444	4385	4326	4267	4208	4150	4091	4033	3974	3916	59
151	0.4 3858	3800	3742	3684	3626	3569	3511	3454	3397	3340	58
152	3283	3226	3169	3112	3055	2999	2943	2887	2831	2775	56
153	2719	2663	2607	2552	2496	2441	2385	2330	2275	2220	55
154	0.4 2166	2111	2056	2002	1947	1893	1839	1785	1731	1677	54
155	1623	1570	1516	1463	1409	1356	1303	1250	1197	1144	53
156	1091	1039	0986	0934	0881	0829	0777	0725	0673	0621	52
157	0°4 0570	0518	0466	.0415	0364	0312	0261	0210	0159	0109	51
158	0058	0007	*9956	*9906	*9856	*9805	*9755	*9705	*9655	*9605	50
159	0°3 9555	9506	9456	9407	9357	9308	9259	9209	9160	9111	49
160	0°3 9063	9014	8965	8916	8868	8820	8771	8723	8675	8627	48
161	8579	8531	8483	8435	8388	8340	8293	8245	8198	8151	48
162	8104	8057	8010	7963	7916	7870	7823	7777	7730	7684	47
163	0°3 7638	7592	7546	7500	7454	7408	7362	7317	7271	7226	46
164	7180	7135	7090	7045	7000	6955	6910	6865	6820	6776	45
165	6731	6686	6642	6598	6554	6509	6465	6421	6377	6334	44

1	1										
v	0	I	2	3	4	5	6	7	8	9	Δ
<i>f. s.</i> 166 167 168	0°3 6290 5856 5431	6246 5813 5389	6202 577 I 5347	6159 5728 5305	6115 5685 5263	6072 5643 5221	6029 5600 5179	5986 5558 5137	5942 5515 5096	5 ⁸ 99 5473 5054	- 43 43 42
169	0 [.] 3 5013	4971	4930	4889	4848	4 ⁸⁰⁷	4766	4725	4684	4643	41
170	4602	4561	4521	4480	4440	4399	4359	4319	4279	4239	40
171	4199	4159	4119	4079	4039	3999	3960	3920	3881	3841	40
172	0°3 3802	3763	3724	3684	3645	3606	3567	3529	3490	3451	39
173	341 2	3374	3335	3297	3258	3220	3182	3144	3106	3067	38
174	3029	2992	2954	2916	2878	2840	2803	2765	2728	2690	33
175	0°3 2653	2616	2579	2541	2504	2467	2430	2394	2357	2320	37
176	2283	2246	2210	2173	2137	2100	2064	2028	1991	1955	36
177	1919	1883	1847	1811	1776	1740	1704	1668	1633	1597	36
178	0°3 1 562	1526	1491	1456	1421	1 385	1 350	1315	1280	1245	35
179	1210	1175	1140	1106	1071	1036	1002	0967	0933	0899	34
180	0864	0830	0796	0762	0727	0693	0659	0626	0592	0558	34
181	0°3 0524	0490	0457	0423	0390	0356	0323	0289	0256	0223	33
182	0190	0156	0123	0090	0057	0024	*9992	*9959	*9926	*9893	33
183	0°2 9861	9828	9795	9763	9730	9698	9666	9633	9601	9569	32
184	0 ^{.2} 9538	9505	9473	9441	9409	9377	9345	9313	9282	9 250	32
185	9218	9187	9155	9124	9092	9061	9030	8999	8967	8936	31
186	8905	8874	8843	8812	8781	8750	8719	8689	8658	8627	31
187	0 [.] 28597	8566	8536	8505	8475	8444	8414	8384	8354	8323	30
188	8293	8263	8233	8203	8173	8143	8114	8084	8054	8024	30
189	7995	7965	7936	7906	7877	7847	7818	7789	7759	7730	29
190	0°2 7700	7672	7643	7614	7585	7556	7527	7498	7469	7440	29
191	7412	7383	7354	7326	7297	7269	7240	7212	7183	7155	29
192	7127	7099	7070	7042	7014	6986	6958	6930	6902	6874	28
193	0 ^{.2} 6846	6819	6791	6763	6735	6708	6680	6653	6625	6598	28
194	6570	6543	6516	6488	6461	6434	6407	6380	6353	6325	27
195	6298	6272	6245	6218	6191	6164	6137	6111	6084	6057	27
196	0 ^{.2} 6031	6004	5978	5951	5925	5899	5872	5846	5820	5793	26
197	5767	5741	5715	5689	5663	5637	5611	5585	5559	5533	26
198	5508	5482	5456	5430	5405	5379	5354	5328	5303	5277	26
199	0 [.] 25252	5227	5201	5176	5151	5125	5100	5075	5050	5025	25
200	5000	4975	4950	4925	4900	4875	4851	4826	4801	4777	25
201	4752	4727	4703	4678	4654	4629	4605	4580	4556	4532	24
202	0 ^{.2} 4507	4483	4459	4435	4411	43 ⁸⁷	4362	4338	4314	4290	24
203	4267	4243	4219	4195	4171	4147	4124	4100	4076	4053	24
204	4029	4006	3982	3959	3935	3912	3888	3865	3842	3819	23

7)	0	I	2	3	4	5	6	7	8	9	Δ
<i>f. s.</i> 205 206 207	0 ^{.2} 3795 3565 3338	3772 3542 3315	3749 3519 3293	3726 3496 3270	3703 3474 3248	3680 3451 3225	3657 3428 3203	3634 3406 3181	3611 3383 3158	3588 3360 3136	- 23 23 22
208	0 [.] 2 3114	3092	3070	3047	3025	3003	2981	2959	2937	2915	22
209	2893	2871	2849	2827	2806	2784	2762	2741	2719	2697	22
210	2676	2654	2633	2611	2590	2568	2547	2525	2504	2483	21
211	0°2 2461	2440	2419	2398	2376	2355	2334	2313	2292	2271	21
212	2250	2229	2208	2187	2166	2145	2125	2104	2083	2062	21
213	2041	2021	2001	1980	1959	1938	1918	1897	1877	1856	21
214	0°2 1836	1816	1795	1775	1755	1734	1714	1694	1674	1653	20
215	1633	1613	1593	1573	1553	1533	1513	1493	1473	1453	20
216	1433	1414	1394	1374	1354	1335	1315	1295	1276	1256	20
217	0°2 1236	1217	1197	1178	1158	1139	1119	1100	1081	1061	19
218	1042	1023	1003	0984	0965	0946	0927	0908	0888	0869	19
219	0850	0831	0812	0793	0774	0755	0736	0718	0699	0680	19
220	0 [.] 2 0661	0642	0624	0605	0586	0568	0549	0530	0512	0493	19
221	0475	0456	0438	0419	0401	0382	0364	0346	0327	0309	18
222	0291	0272	0254	0236	0218	0199	0181	0163	0145	0127	18
223	0 ^{.2} 0109	0091	0073	0055	0037	0019	0001	*9983	*9965	*9948	18
224	0 ^{.1} 9930	9912	9894	9877	9859	9841	9824	9806	9788	9771	18
225	9753	9736	9718	9701	9683	9666	9648	9631	9613	9596	17
226	0°1 9579	9561	9544	95 27	9510	9492	9475	9458	9441	9424	17
227	9407	9389	9372	9355	9338	9321	9304	9287	9270	9254	17
228	9237	9220	9203	9186	9169	9153	9136	9119	9102	9086	17
229	0°1 9069	9052	9036	9019	9003	8986	8970	8953	8937	8920	17
230	8904	8887	8871	8854	8838	8822	8805	8789	8773	8757	16
231	8740	8724	8708	8692	8676	8659	8643	8627	8611	8595	16
232	0 [.] 1 8579	8563	8547	8531	8515	8499	8483	8467	8452	8436	16
233	8420	8404	8388	8373	8357	8341	8325	8310	8294	8278	16
234	8263	8247	8232	8216	8201	8185	8170	8154	8139	8123	16
235	0°1 8108	8092	8077	8062	8046	8031	8016	8000	7985	7970	15
236	7955	7939	7924	7909	7894	7879	7864	7849	7834	7818	15
237	7803	7788	7773	7758	7743	7729	7714	7699	7684	7669	15
238	0 [.] 1 7654	7639	7624	7610	7595	7580	7565	7551	7536	7521	15
239	7507	7492	7477	7463	7448	7434	7419	7405	7390	7376	15
240	7361	7347	7332	7318	7303	7289	7275	7260	7246	7232	14
241	0 [.] 17217	7203	7189	7175	7160	7146	7132	7118	7104	7089	14
242	7075	7061	7047	7033	7019	7005	6991	6977	6963	6949	14
243	6935	6921	6907	6893	6879	6866	6852	6838	6824	6810	14

X. (continued).

U	0	I	2	3	4	5	6	7	8	9	Δ
<i>f. s.</i> 244 245 246	0°1 6797 6660 6525	6783 6646 6511	6769 6633 6498	6755 6619 6484	6742 6605 6471	6728 6592 6458	6714 6578 6444	6701 6565 6431	6687 6551 6418	6673 6538 6404	- 14 14 13
247	0°1 6391	6378	6365	6351	6338	6325	6312	6299	6285	6272	13
248	6259	6246	6233	6220	6207	6194	6181	6168	6155	6142	13
249	6129	6116	6103	6090	6077	6064	6051	6038	6026	6013	13
250	0 [•] 1 6000	5987	5974	5962	5949	5936	5923	5911	5898	5885	13
251	5 ⁸ 73	5860	5848	5835	5822	5810	5797	5785	5772	5760	13
252	5747	5735	5722	5710	5697	5685	5672	5660	5648	5635	12
253	0°1 5623	5610	5598	5586	5574	5561	5549	5537	5524	5512	12
254	5500	5488	5476	5463	5451	5439	5427	5415	5403	5391	12
255	5379	5367,	5355	5343	5331	5319	5307	5295	5283	5271	12
256	0°1 5259	5247	5235	5223	5211	5199	5188	5176	5164	5152	12
257	5140	5129	5117	5105	5093	5082	5070	5058	5047	5035	12
258	5023	5011	5000	4988	4977	4965	4953	4942	4930	4919	12
259	0°1 4907	4896	4884	4873	4861	4850	4839	4827	4816	4804	II
260	4793	4782	4770	4759	4747	4736	4725	4714	4702	4691	II
261	4680	4669	4657	4646	4635	4624	4612	4601	4590	4579	II
262	0 [.] 1 4568	4557	4546	4535	4524	4512	4501	4490	4479	4468	II
263	4457	4446	4435	4424	4413	4403	4392	4381	4370	4359	II
264	4348	4337	4326	4315	4305	4294	4283	4272	4261	4251	II
265	0°1 4240	4229	4218	4207	4197	4186	4176	4165	4154	4144	II
266	4133	4122	4112	4101	4091	4080	4070	4059	4048	4038	II
267	4027	4017	4005	3996	3985	3975	3965	3954	3944	3933	IO
268	0°I 3923	3913	3902	3892	3881	3871	3861	3850	3840	3830	10
269	3820	3809	3799	3789	3779	3768	3758	3748	3738	3728	10
270	3717	3707	3697	3687	3677	3667	3657	3647	3637	3626	10
271	0'1 3616	3606	3596	3586	3576	3566	3556	3546	3536	3526	10
272	3516	3507	3497	3487	3477	3467	3457	3447	3437	3427	10
273	3418	3408	3398	3388	3378	3369	3359	3349	3339	3330	10
274	0°1 3320	3310	3300	3291	3281	3271	3262	3252	3242	3233	10
275	3223	3214	3204	3194	3185	3175	3166	3156	3147	3137	10
276	3127	3118	3108	3099	3090	3080	3071	3061	3052	3042	9
277	0°1 3033	3023	3014	3005	2995	2986	2977	2967	2958	2949	9
278	2939	2930	2921	2911	2902	2893	2884	2874	2865	2856	9
279	2847	2838	2828	2819	2810	2801	2792	2782	2773	2764	9
280	0°1 2755	2746	2737	2728	2719	2710	2701	2692	2683	2674	9
281	2664	2655	2646	2637	2628	2619	2611	2602	2593	2584	9
282	2575	2566	2557	2548	2539	2530	2521	2513	2504	2495	9
283	0 [.] 1 2486	2477	2468	2460	2451	2442	2433	2425	2416	2407	9
284	2398	2390	2381	2372	2363	2355	2346	2337	2329	2320	9

CUBIC LAW OF RESISTANCE.

'XI.

Coefficients for the Cubic Law of the Resistance of the Air to Spherical Projectiles. ($\omega = 534.22$ grains.)

		K_v			K_v			K_v
v	K_v		v	K_v		U	K_v	
1 6 0		S	f.s.	1	S	f. s.		8
f. s.			J. 3.			J. S.		
840	140.8	4.374	1390	142.2	4.433	1840	111.0	3.476
to	140.8	4.374	1400	142.1	4.414	1850	111.4	3.461
960	140.8	4.374	1410	141.4	4.393	1860	110.8	3.442
970	140.9	4.377	1420	140.8	4.374	1870	110.3	3.426
980	141.2	4.386	1430	140'1	4.352	1880	109.8	3.411
990	141.5	4.396	1440	139.5	4.334	1890	109.4 108.9	3.398
1000	142.0	4.411	1450	138.8 138.1	4.312	1900 1910	108.5	3.383
1010 1020	142.8	4.436	1460	1301	4·290 4·268	1910	108.1	3·371 3·358
1020	144'0 145'5	4°473 4°520	1470 1480	13/4	4.247	1920	103 1	3.346
1030	143 5	4.582	1400	136.0	4.225	1930	107'3	3.333
1040	14/ 5	4.635	1500	135.3	4.203	1940	106.9	3.321
1060	150.2	4.675	1510	134.6	4.181	1960	106.2	3.308
1070	151.6	4.709	1520	133.9	4.160	1970	106.1	3.296
1080	152.6	4.740	1530	133.2	4.138	1980	105.7	3.284
1090	153.4	4.765	1540	132.2	4.116	1990	105.3	3'271
1100	154.1	4.787	1550	131.8	4.094	2000	104.9	3.259
IIIO	154.6	4.803	1560	131.1	4.073	2010	104.2	3.246
1120	155.1	4.818	1570	130.4	4.021	2020	104'1	3.234
1130	155.4	4.827	1580	129.7	4.029	2030	103.0	3.518
1140	155.2	4.837	1590	129.0	4.002	2040	103.5	3.206
1150	155.9	4.843	1600	128.3	3.986	2050	102.2	3.100
1160	156.0	4.846	1610	127.6	3.964	2060	102.5	3.122
1170	156.0	4.846	1620	126.9	3.942	2070	101.6	3.126
1180	156.0	4.846	1630	126.2	3.920	2080	101.1	3.141
1190	155.8	4.840	1640	125.5	3.899	2090	100.2	3.122
1200	155.2	4.831 4.818	1650 1660	124.8	3.877 3.855	2100 2110	99.9	3.103 3.082
I2I0 I220	155.1	4.803	1670	124.1	3.833	2110	99°3 98°7	3.066
	154.6	4.784	1680	123°4 122°7	3.812	2120	98.2	3.021
1230 1240	154°0 153°4	4765	1690	122 / 122 0	3.790	2130	97.6	3.032
1240	153 4	4705	1700	121.3	3.768	2150	97.1	3.016
1250	152.0	4.722	1710	120.6	3.746	2160	96.5	2.998
1270	151.3	4.700	1720	119.9	3.725	2170	96.0	2.982
1280	150.2	4.675	1730	119.2	3.703	2180	95.4	2.964
I 290	149.6	4.647	1740	118.2	3.681	2190	94.9	2.948
1300	148.7	4.619	1750	117.8	3.659	2200	94.4	2.933
1310	147.9	4.594	1760	117.1	3.638	2210	93.9	2.912
1320	147.2	4.573	1770	116.4	3.010	2220	93°4	2.001
1330	146.6	4.554	1780	115.2	3.594	2230	92.9	2.886
1340	146.0	4.535	1790	115.0	3.22	2240	9 2 .4	2.870
1350	145.3	4.214	1800	114.4	3.524	2250	91.9	2.855
1360	144.7	4.495	1810	113.2	3.232	2260	91.4	2.839
1370	144.0	4.473	1820	113.1	3.213	2270	90.9	2·824 2·808
1380	143.4	4.422	1830	112.2	3.492	2280	90.4	2 000
U.								

XII.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7.5					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{K_v}{g} \begin{array}{c} v \\ f. s. \end{array} \begin{array}{c} K_v \\ \hline \end{array} \begin{array}{c} \frac{K_v}{g} \\ \hline \end{array}$	K_v			K _v	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1364 1360 $107'2$ $3'330$ 131 1370 $106'8$ $3'318$ 032 1380 $105'8$ $3'287$ 932 1400 $105'8$ $3'287$ 932 1400 $105'8$ $3'287$ 932 1400 $105'8$ $3'287$ 932 1420 $105'8$ $3'287$ 932 1420 $104'0$ $3'249$ 892 1420 $103'4$ $3'212$ 855 1440 $102'8$ $3'193$ 705 1450 $102'1$ $3'172$ 724 1460 $101'4$ $3'150$ 6647 1450 $99'7$ $3'035$ 1500 $98'4$ $3'057$ $5'11$ 557 1520 $96'8$ $3'07'$ 473 1530 $96'1$ $2'985$ $'442$ 1540 $97'2$ $2'886$ 150 $93'7$ $2'9$	100 ⁻⁸ 99 ⁻² 99 ⁻⁶ 96 ⁻⁰ 94 ⁻⁵ 93 ⁻¹ 91 ⁻⁷ 90 ⁻⁰ 88 ⁻⁰ 88 ⁻⁷ 78 ⁻⁶ 78 ⁻⁶ 78 ⁻⁶ 78 ⁻⁶ 78 ⁻⁶ 77 ⁻⁶ 70 ⁻⁶ 77 ⁻⁶ 70 ⁻⁶ 7	590 600 610 620 630 640 650 660 670 680 690 700 720 730 740 730 740 750 750 750 750 750 750 750 750 750 75	$\begin{array}{c} 17 \\ \hline 09 \\ 15 \\ 66 \\ 13 \\ 42 \\ 12 \\ 53 \\ 11 \\ 75 \\ 11 \\ 75 \\ 11 \\ 75 \\ 11 \\ 75 \\ 11 \\ 75 \\ 10 \\ 44 \\ 9 \\ 8 \\ 9 \\ 39 \\ 72 \\ 29 \\ 6 \\ 9 \\ 39 \\ 72 \\ 29 \\ 6 \\ 9 \\ 54 \\ 38 \\ 170 \\ 72 \\ 29 \\ 6 \\ 9 \\ 6 \\ 9 \\ 6 \\ 71 \\ 38 \\ 8 \\ 5 \\ 5 \\ 22 \\ 20 \\ 7 \\ 20 \\ 7 \\ 20 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	550°0 504'2 465'4 403'3 378'1 355'9 336'1 318'4 302'5 288'1 275'0 263'0 252'1 216'1 205'6 232'7 224'1 216'1 205'6 232'7 224'1 216'1 205'6 232'7 155'2 155'1 151'3 147'6 144'0 140'7 137'5 134'4 128'7 126'0 123'7 126'0 123'7 126'0 123'7 126'0 123'7 126'0 123'7 126'0 123'7 126'0 123'7 126'0 123'7 126'0 123'7 126'0 123'7 126'0 123'7 126'0 123'7 126'0 123'7 126'0 123'7 126'0 123'7 126'1 151'3 147'6 118'6 116'3 114'20 116'6 116'3 114'20 116'0	$\begin{array}{c} 100\\ 110\\ 120\\ 130\\ 150\\ 160\\ 170\\ 180\\ 190\\ 200\\ 210\\ 220\\ 230\\ 240\\ 250\\ 270\\ 280\\ 230\\ 240\\ 250\\ 270\\ 280\\ 290\\ 230\\ 330\\ 320\\ 330\\ 330\\ 340\\ 350\\ 330\\ 340\\ 350\\ 350\\ 350\\ 350\\ 350\\ 350\\ 350\\ 35$

Coefficients for the Cubic Law of the Resistance of the Air to Ogival-headed Projectiles. ($\omega = 534.22$ grains.)

v f.s.	K _v	$\frac{K_v}{g}$	U f.s.	K _v	$\frac{K_v}{g}$	V f.s.	K _v	$\frac{K_v}{g}$
1850 1860 1870 1880 1900 1910 1920 1930 1940 1950 1940 1950 1940 1950 1970 1980 1970 1980 2010 2010 2010 2020 2040 2050 2050 2050 2050	74.7 74.3 73.3 72.8 72.2 71.2 70.8 70.4 70.4 70.6 69.6 69.3 69.0 69.3 69.0 68.5 68.5 68.5 68.5 68.5 68.5 68.5 67.8 67.5 67.4 67.3 67.5 67.4	2.321 2.308 2.293 2.227 2.262 2.243 2.227 2.212 2.109 2.187 2.165 2.153 2.143 2.119 2.112 2.106 2.103 2.109 2.009	2170 2180 2190 2220 2220 2220 2240 2250 2250 2250 225	66.3 66.1 66.0 65.8 65.3 65.1 64.9 64.2 63.7 63.2 64.2 63.7 63.2 62.7 63.2 61.7 61.2 60.7 60.7 60.7 59.7 59.7 59.7 58.0 58.0 57.5 57.0	2:060 2:053 2:050 2:024 2:029 2:022 2:016 2:007 1:994 1:979 1:963 1:948 1:979 1:963 1:948 1:917 1:901 1:855 1:836 1:855 1:836 1:855 1:836 1:855 1:836 1:786 1:771	2480 2490 2500 2510 2520 2530 2550 2550 2550 2550 2580 2610 2620 2620 2620 2630 2640 2630 2640 2650 2640 2650 2680 2690 2710	53.6 53.2 52.9 52.7 52.3 52.2 52.3 52.2 52.3 51.8 51.7 51.6 51.4 51.4 51.4 51.4 51.4 51.4 51.4 51.4	1-665 1-653 1-643 1-637 1-631 1-625 1-625 1-625 1-625 1-609 1-606 1-603 1-606 1-603 1-606 1-597 1-597 1-597 1-597 1-597 1-597 1-597 1-594 1-594
2100 2110 2120 2130 2140 2150 2160	67.0 66.9 66.8 66.7 66.6 66.5 66.4	2.081 2.078 2.075 2.072 2.069 2.066 2.063	2410 2420 2430 2440 2450 2460 2470	56·5 56·0 55·6 55·1 54·7 54·3 53·9	1.755 1.740 1.727 1.712 1.699 1.687 1.674	2720 2730 2740 2750 2760 2770 2780	51·3 51·2 51·2 51·2 51·2 51·2 51·2 51·2	1.294 1.291 1.291 1.291 1.291 1.291 1.291 1.291

XII. (continued).

XIII.

Coefficients for the Cubic Law of the Resistance of the Air to Hemispherical-headed Projectiles. $(\omega = 534.22 \text{ grains.})$

U f. s.	K _v	$\frac{K_v}{g}$	κ1	U f.s.	Κ,	$\frac{K_v}{g}$	κ,	ت f.s.	K _v	$\frac{K_v}{g}$	κ,
1100 1110 1120 1130 1140 1150 1160 1640 1650 1660	133.0 133.0 133.0 133.0 133.0 133.0 133.0 133.0 133.0 135.0 115.6 115.4 115.2	4'13 4'13 4'13 4'13 4'13 4'13 4'13 4'13	1'24 1'23 1'22 1'21 1'21 1'21 1'21 1'32 1'33 1'33	1670 1680 1690 1700 1710 1720 1730 1740 1750 1760 1770	115.0 114.7 114.4 114.0 113.6 113.2 112.7 112.1 111.4 110.7 109.9	3.57 3.56 3.55 3.54 3.53 3.52 3.50 3.48 3.46 3.44 3.41	1 '34 1 '35 1 '36 1 '37 1 '37 1 '37 1 '37 1 '37 1 '38 1 '39 1 '39 1 '39 1 '39	1780 1790 1800 1810 1820 1830 1840 1850 1860 1870	109°0 108°0 107°0 106°0 104°9 103°8 102°7 101°6 100°6 99°6	3 '39 3 '36 3 '32 3 '29 3 '26 3 '22 3 '19 3 '16 3 '13 3 '09	1 '39 1 '38 1 '38 1 '38 1 '38 1 '38 1 '37 1 '37 1 '36 1 '35 1 '35

XIV.

Coefficients for the Cubic Law of the Resistance of the Air to Flat-headed Projectiles. ($\omega = 534.22$ grains.)

U f.s.	K _v	$\frac{K_v}{g}$	ĸg	V f. s.	Κ,	$\frac{K_v}{g}$	κ2	U f.s.	<i>K</i> _v	$\frac{K_v}{g}$	ĸg
1530 1540 1550 1560 1570 1580 1590 1600 1610 1620 1630 1640	174'3 174'4 174'4 174'5 174'5 174'5 174'5 174'5 174'5 174'3 174'2 174'1 174'0 173'9 173'7	5.41 5.42 5.42 5.42 5.42 5.42 5.42 5.41 5.41 5.41 5.41 5.40 5.40	1.81 1.83 1.85 1.86 1.88 1.91 1.92 1.94 1.95 1.97 1.98	1650 1660 1670 1680 1700 1700 1710 1720 1730 1740 1750	173 °6 173 °5 173 °3 173 °2 173 °0 172 °9 172 °7 172 °6 172 °6 172 °4 172 °1 171 °8	5.39 5.38 5.38 5.37 5.37 5.36 5.36 5.36 5.35 5.34	2.00 2.01 2.02 2.04 2.05 2.07 2.09 2.10 2.12 2.13 2.14	1760 1770 1780 1800 1810 1820 1820 1820 1820 1850 1860	171'5 171'2 170'9 170'5 170'0 169'5 168'9 168'3 167'6 166'8 165'9	5°33 5°32 5°31 5°29 5°28 5°27 5°25 5°23 5°21 5°18 5°15	2'15 2'16 2'17 2'19 2'20 2'21 2'22 2'22 2'22 2'23 2'23 2'23

238

Y	V	r -	
\mathbf{v}	Y		

	$P_{\phi} = 3 \text{ t}$	$an \phi + ta$	$an^{3}\phi$		$P_{\phi} = 3 \text{ t}$	an ϕ + ta	$an^{3}\phi$
φ	P_{ϕ}	$\operatorname{Log} P_{\phi}$	$\log \Delta P_{\phi}$	φ	P_{ϕ}	$\log P_{\phi}$	$\log \Delta P_{\phi}$
1° 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 3 24 25 6 27 28 29 30 31 32 23 33 45 36 7 38 39 40	*05237 *10481 *15737 *21012 *26314 *31647 *37021 *42440 *47913 *33446 *59049 *64727 *70491 *70491 *64727 *70491 *70491 *70491 *70491 *70491 *70491 *70491 *70491 *70491 *70491 *70491 *70491 *70491 *70491 *70491 *70502 *75792 *757922 *75795 *75775775 *7577575 *75775757575 *757757575 *75775757575	8.71909 9.02038 9.19691 9.32247 9.42018 9.50844 9.50844 9.50844 9.62777 9.68045 9.77121 9.81109 9.84813 9.984813 9.984813 9.97579 9.94036 9.91545 9.94036 9.91545 9.94036 9.97579 0.00392 0.00392 0.00393 0.05695 0.00392 0.00524 0.13030 0.15349 0.17618 0.19844 0.22033 0.24191 0.26322 0.28432 0.30525 0.32605 0.36743 0.38809 0.40877 0.42952 0.45037 0.47135 0.49250	8.71961 8.72067 8.72226 8.72439 8.72704 8.73023 8.73394 8.73821 8.74302 8.7426 8.7426 8.7527 8.7577 8.75778 8.759600 9.75109 9.7533 9.75283 8.759600 9.75283 9.75283 8.759600 9.751222 9.714491 9.71422 9.714491 9.714942	41° 423 444 456 467 48 49 50 52 53 54 555 57 859 60 61 62 63 64 65 666 670 71 72 73 47 75 767 778 79 80	3'26475 3'43119 3'60845 3'79762 4'00000 4'21701 4'45030 4'70173 4'97344 5'55787 5'93669 6'31812 6'73669 6'31812 6'73669 6'318160 7'19730 7'70633 8'27090 8'89957 9'60260 10'3923 11'2836 12'2946 13'4475 14'7699 16'2959 18'0687 20'1426 22'5878 25'4947 20'1426 22'5878 25'4947 28'9820 33'2080 38'3853 44'8057 5'28763 6'31771 76'5513 94'2603 11'8'244 151'592 199'422	0.51385 0.53545 0.53545 0.55732 0.57951 0.60206 0.62501 0.64839 0.67226 0.72164 0.72164 0.72164 0.74725 0.77355 0.82844 0.85717 0.88685 0.91755 0.94937 0.98239 1.01671 1.05245 1.08971 1.0284 1.12864 1.16938 1.221208 1.2208 1.2208 1.221208 1.221208 1.221208 1.221208 1.221208 1.221208 1.22124 1.58417 1.4645 1.45133 1.52124 1.52124 1.58417 1.45133 1.72226 1.80056 1.88395 1.97433 2.07278 2.18068 2.29977	9'22128 9'24859 9'27687 9'36649 9'3649 9'36790 9'46900 9'46900 9'50514 9'53142 9'53142 9'52167 9'66342 9'75171 9'79843 9'84697 9'75171 9'79843 9'84697 9'95001 0'00475 0'06179 0'12136 0'38330 0'46343 0'54249 0'52593 0'71410 0'80756 0'90691 1'1288 1'12626 1'24819 1'37992 1'52307

XVI.

Table for 2	y = 0.00 is	the	same as	that i	for λ	= 0.00 (p. 8	3).
-------------	-------------	-----	---------	--------	---------------	----------	------	-----

	2	$\gamma = 0.0$	I		γ=0°03					
\$	(x)	(Y)	(т)	(v)	\$	(x)	(Y)	(т)	(v)	
45° 44 43 42 41	10119 9767 9428 9098 8780	5082 4736 4413 4111 3830	10059 9712 9376 9051 8736	1434 1408 1384 1362 1340	45° 44 43 42 41	10374 10001 9642 9296 8962	5259 4892 4551 4234 3939	10184 9827 9482 9148 8826	1476 1448 1421 1395 1371	
40 39 38 37 36	8471 8172 7881 7599 7324	3566 3320 3088 2872 2668	8431 8135 7847 7567 7294	1 320 1 300 1 282 1 264 1 247	40 39 38 37 36	8639 8327 8024 7731 7445	3663 3406 3165 2940 2728	8514 8211 7918 7632 7355	1 348 1 327 1 307 1 288 1 270	
35 34 33 3 ² 31	7056 6795 6540 6291 6047	2477 2297 2129 1970 1821	7029 6770 6517 6270 6028	1231 1216 1201 1188 1175	35 34 33 32 31	7168 6898 6635 6378 6127	2530 2345 2171 2007 1854	7084 6821 6564 6313 6068	1252 1236 1220 1205 1191	
-					$\gamma = 0.04$					
		γ=0°0	02				γ=0.0	54		
¢	(x)	$\gamma = 0.0$	C2	(v)	φ	(x)	(x)	D4 (T)	(v)	
¢ 45° 44 43 42 41				(V) 1454 1427 1402 1378 1355	φ 45° 44 43 42 41			-	(V) 1499 1469 1440 1413 1388	
45° 44 43 42	(x) 10244 9881 9532 9195	(Y) 5168 4812 4481 4172	(T) 10121 9768 9428 9099	1454 1427 1402 1378	45° 44 43 42	(x) 10510 10126 9756 9401	(Y) 5354 4976 4626 4300	(T) 10250 9887 9537 9200	1499 1469 1440 1413	

~XVI. (continued).

		$\gamma = 0.0$	05				$\gamma = 0$	05	
ø	(x)	(Y)	(T)	(v)	ø	(x)	(Y)	(T)	(v)
45°	10653	5454	10319	1523	10	175	1.2	175	999
44	10256 9876	5065 4704	9950	1491 1461	2	349	6.1	349	999
43 42	9511	4369	9595 9252	1433	3	523 697	13.7	523 698	999 999
41	9159	4058	8922	1406	5	871	38.1	873	1000
40	8820	3768	8602	1381	6	1046	54.9	1048	1000
39 38	8493	3499	8292	1357	78	1220	74.8	1224	1001
30	8177	3247 3012	7992 7701	1335 1314	9	1396 1571	97 [.] 8	1401	1003
36	7574	2793	7418	1294	10	1748	153.7	1756	1005
35	7286	2587	7142	1275	11	1925	186.5	1935	1009
34	7006	2395	6874	1257	12	2103	222.7	2114	1012
33	6734	2215	6613 6358	1240	13	2282	262.5	2296	1015
32 31	6469 6211	2046 1888	6109	1224 1209	14 15	2463 2644	305.7 352.6	2478	1018 1021
					-				
30	5959	1739	5865	1194	16	2827	403.3	2847	1025
29 28	5713 5473	1600 1470 -	5627 5394	1181 1168	17 18	3011 3197	457.9	3034 3223	1030 1034
27	5237	1347	5166	1156	19	3385	579.3	3414	1034
26	5007	1232	4941	1144	20	3574	646.4	3607	1045
25	4781	1124	4721	1133	21	3766	7180	3802	1050
24	4559	1023	4505	1122	22	3959	-794.3	.4000	1057
23 22	434I 4127	928·5 839·8	4293 4083	1112 1103	23 24	4155 4354	875.5	4200 4403	1063 1070
21	3917	756.9	3877	1094	25	4555	1053	4609	1070
20	3710	679.5	3674	1086	26	4759	1151	4818	1085
19	3506	607.2	3474	1078	27	4966	1254	5030	1093
18	3305	539.9	3277	1070	28	5176	1363	5246	IIOI
17 16	3106 2910	477.4	3082 2889	1063 1056	29 30	5389 5606	1479 1602	5465 5689	1110 1120
15	2717	365.7	2698	1050	31	5827	1732	5917	
14	2525	316.2	2509	1050	32	5027 6052	1/32	6149	1130 1140
13	2336	270.8	2322	1039	33	6281	2016	6386	1151
12	2149	229.2	2137	1034	34	6515	2170	6628	1163
II	1963	191.4	1954	1029	35	6753	2334	6876	1175
10	1779	157.3	1771	1025	36	6996	2508	7129	1187
9 8	1597 1415	126·8 99·7	1590 1410	1021 1017	37 38	7245 7500	2692 2887	7388 7654	1201 1214
7	1236	76.0	1232	1017	39	7760	3095	7926	1214
76	1057	55.6	1054	1014	40	8027	3315	8206	1244
5	879	38.5	877	1008	41	8300	3548	8494	1260
4	702	24.6	701	1006	42	8581	3797	8789	1277
3	526	13.8	525	1004	43	8869 9166	4061	9093	1294 1312
I	350	1.2	350	1002 1001	44 45	9100	4342 4641	9407 9730	1312
o	0	0	0	1000	43	14/0	1.4.	115-	

B.

		γ=0°0	05			7	γ=0°0	97		
φ	(x)	(Y)	(T)	(v)	φ	(x)	(Y)	(т)	(v)	
46° 47 48 49 50	9784 10107 10441 10785 11140	4961 5301 5665 6054 6470	10064 10409 10766 11136 11519	1 35 1 1 37 1 1 39 3 1 4 1 6 1 4 3 9	45° 44 43 42 41	10962 10537 10132 9744 9372	5674 5257 4873 4517 4188	10465 10083 9717 9364 9024	1577 1541 1507 1475 1445	
51 52 53 54 55	11508 11888 12282 12691 13115	6916 7395 7909 8461 9056	11918 12332 12763 13212 13680	1464 1489 1516 1544 1574	40 39 38 37 36	9015 8672 8340 8020 7711	3883 3600 3336 3091 2862	8695 8378 8071 7773 7484	1417 1390 1365 1342 1320	
56 57 58 59 60	1 3556 14014 14491 14987 15504	9697 10389 11138 11948 12826	14170 14682 15219 15782 16374	1604 1636 1669 1704 1740	35 34 33 32 31	7412 7122 6840 6566 6299	2648 2449 2262 2087 1924	7203 6930 6664 6404 6152	1 300 1 28 1 1 26 2 1 244 1 227	
the second division in which the second division is not the second division of the second division is not the second division of the seco					γ=0.08					
		γ=0.0	56				γ=0°0	58		
φ	(x)	$\gamma = 0.0$	об (т)	(v)	φ	(x)	(\mathbf{x})	о8 (т)	(v)	
φ 45° 44 43 42 41	1			(v) 1550 1515 1483 1453 1425	φ 45° 44 43 42 41				(V) 1608 1569 1532 1498 1466	
45° 44 43 42	(X) 10803 10393 10001 9625	(Y) 5561 5158 4786 4441	(T) 10390 10015 9655 9307	1550 1515 1483 1453	45° 44 43 42	(X) 11129 10689 10270 9869	(Y) 5795 5362 4964 4597	(T) 10543 10154 9781 9422	1608 1569 1532 1498	

XVI. (continued).

XVI. (continued).

-	2	y = 0.0	9				γ=0·:	0	
ø	(x)	(Y)	(т)	(v)	φ	(x)	(y)	(т)	(v)
45°	11307	5923	10624	1641	25°	4909	1165	4784	1165
44	10849	5473	10228	1599	24	4675	1058	4562	1152
43	10414	5061	9848	1559	23	4445	958 · 6	4344	1140
42	10000	4681	9483	1522	22	4221	865 · 5	4129	1129
41	9605	4332	9133	1488	21	4001	778·8	3918	1118
40	9227	4009	8795	1457	20	3784	697.9	3711	1 108
39	8864	3710	8469	1427	19	3572	622.7	3507	1098
38	8516	3432	8154	1399	18	3363	552.8	3305	1089
37	8181	3175	7849	1373	17	3158	488.0	3107	1081
36	7857	2936	7553	1349	16	2955	428.0	2911	1073
35	7545	2713	7266	1 326	15	2756	372.7	2717	1065
34	7243	2506	6988	1 304	14	2559	321.8	2526	1058
33	6951	2312	6717	1 284	13	2365	275.2	2336	1052
32	6667	2131	6453	1 265	12	2173	232.6	2149	1045
31	6391	1962	6196	1 247	11	1983	194.0	1963	1040
		γ=0°3	10		10 98 76	1796 1610 1426 1243	159·3 128·2 100·7 76·7	1779 - 1597 1416 1236	1034 1029 1025 1020
φ	(x)	(Y)	(т)	(v)	5	1062 883	56.0 38.7	1057 879	1016 1013
45°	11495	6061	10709	1677	4	704	24.7	702	1010
44	11018	5592	10305	1630	3	527	13.8	526	1007
43	10567	5163	9918	1587	2	350	6.1	350	1004
42	10138	4770	9547	1548	1	175	1.5	175	1002
41 40 39 38 37 36	9730 9340 8967 8609 8265 7934	4409 4076 3769 3484 3220 2975	9190 8847 8516 8197 7888 7589	1512 1478 1447 1417 1390 1364	0 1 2 3 4 5	0 174 348 521 694 867	0 1.5 6.1 13.6 24.2 37.8	0 174 349 523 697 871	998 997 996 996 995
35	7615	2747	7300	1340	6	1040	54°5	1046	995
34	7307	2536	7018	1318	7	1213	74°2	1220	995
33	7009	2338	6745	1297	8	1386	97°0	1396	996
3 ²	6720	2154	6478	1277	9	1559	122°8	1572	997
31	6439	1982	6219	1258	10	1733	151°9	1748	998
30	6167	1822	5966	1240	11	1907	184·2	1925	999
29	5903	1672	5719	1223	12	2082	219·7	2104	1001
28	5645	1532	5478	1207	13	2257	258·6	2283	1003
27	5394	1402	5242	1192	14	3433	300·8	2463	1006
26	5148	1279	5010	1178	15	2610	346·6	2644	1008

		γ=0°1	10				$\gamma = 0.1$	10	
ø	(x)	(Y)	(T)	(v)	φ	(x)	(Y)	(T)	(v)
16° 17 18 19 20	2788 2967 3147 3329 3512	396°0 449°0 505°9 566°7 631°5	2827 3012 3198 3386 3575	1011 1015 1018 1022 1027	56° 57 58 59 60	12607 12994 13394 13808 14235	8769 9355 9983 10658 11383	13651 14123 14615 15129 15667	1478 1502 1526 1551 1577
21 22 23 24 25	3697 3883 4072 4262 4455	700°6 774°1 852°1 934°8 1023	3767 3961 4157 4356 4557	1031 1036 1041 1047 1053			γ=0.3	12	
26 27 28	4649 4846 5046	1115 1214 1318	4761 4969 5179	1060 1066 1073	φ	(x)	(Y)	(T)	(v)
29 30	5249 5454	1428 1544	5393 5611	1081 1089	45° 44	11912 11390	6369 5856	10894 1047 I	1759
31 32	5663 5874	1667 1797	5832 6058	1097 1106	43 42	10899 10436	5390 4966	10067 9682	1652 1606
33 34	6090 6309	1934 2079	6288 6522	1115 1125	41	9998	4578	9312	1564
35 36	6531 6758	2232 2394	6761 7006	1135 1146	40 39 38	9581 9185 8806	4222 3895 3594	8958 8617 8289	1525 1490 1456
37 38	6990 7225	2565 2746	7256 7511	1157 1168	30 37 36	8444 8096	3316 3059	7972 7665	1430 1426 1397
39 40	7466 7712	2937 3140	7773 8042	1180 1193	35 34	7762 7440	2820 2599	7368 7081	1371 1346
41 42	7963 8219	3354 3581	8317 8599	1206 1220	33 32	7130 6830	2394 2202	6802 6530	1322 1300
43 44 45	8482 8751 9027	3822 4077 4348	8890 9189 9496	1234 1249 1264	31 30	6539 6258	2024 1859	6266 6009	1280 1260
46	9309	4635	9813	1280	29 28	5985 5719	1704	5758 5513	1242 1225
47 48	9599 9896	4941 5266	10140 10477	1297 1314	27 26	5461 5209	1425 1300	5274 5040	1208 1193
49 50	10202 10516	5611 5979	10825 11186	1332 1351	25 24	4964 4724	1183 1073	4810 4585	1179
51 52	10839 11172	6371 6789	11559 11946	1370 1391	23 22	4490 4260	971.5 876.5	4365 4148	1152 1140
53 54	11514 11867	7236	12348 12765	1411 1433	21	4036	788.0	3936	1129
55	12231	8223	13199	1455	20	3816	705.7	3726	1118

XVI. (continued).

		γ=0'I	4				γ=0.1	6	
ø	(x)	(Y)	(T)	(v)	φ	(x)	(Y)	(T)	(v)
45° 44 43 42 41	12396 11815 11275 10770 10296	6734 6163 5650 5187 4768	11102 10655 10232 9829 9445	1859 1790 1728 1674 1624	35° 34 33 32 31	8091 7737 7397 7071 6757	2985 2742 2517 2309 2117	7519 7217 6925 6642 6368	1440 1409 1380 1354 1329
40 39 38 37 36	9848 9425 9022 8638 8271	4385 4036 3716 3421 3150	9078 8725 8386 8060 7745	1579 1538 1500 1466 1433	30 29 28 27 26	6454 6162 5879 5605 5339	1938 1773 1619 1476 1344	6101 5841 5588 5342 5101	1305 1284 1263 1244 1226
35 34 33 32 31	7920 7583 7259 6947 6645	2899 2667 2453 2254 2069	7441 7147 6862 6585 6316	1404 1376 1350 1326 1303	25 24 23 22 21 20	5080 4828 4583 4343 4110 3881	1220 1105 998·7 899·6 807·5 722·0	4865 4635 4409 4188 3971 3758	1209 1193 1178 1164 1151 1138
30 29 28 27 26	6354 6071 5797 5531 5273	1897 1737 1589 1450 1321	6054 5799 5550 5307 5070	1282 1262 1244 1226 1209			$\gamma = 0$		
25 24	5021 4775	1201 1089	4837 4610	1194 1179	φ	(x)	(Y)	(T)	(v)
23 22 21 20	4535 4301 4072 3848	984.8 887.8 797.6 713.7	4387 4168 3953 3742	1165 1151 1139 1128	45° 44 43 42	13677 12907 12217 11590	7732 6976 6320 5746	11616 11102 10624 10175	2162 2040 1939 1854
		γ=0 [.]	16		41 40	1 1014 10481	5236 4781	9752 9351	1780 1716
φ	(x)	(¥)	(T)	(v)	39 38 37 36	9985 9520 9082 8668	4371 4001 3665 3359	8969 8605 8257 7922	1658 1607 1561 1519
45° 44 43 42 41	12970 12312 11708 11150 10631	7175 6528 5955 5444 4985	11339 10863 10416 9993 9591	1988 1899 1822 1755 1695	35 34 33 32 31	8276 7902 7545 7204 6876	3079 2822 2586 2368 2168	7601 7291 6992 6702 6422	1481 1446 1414 1384 1356
40 39 38 37 36	10146 9689 9258 8850 8461	4570 4193 3850 3537 3249	9208 8842 8491 8155 7831	1642 1594 1550 1510 1474	30 29 28 27 26	6561 6258 5965 5682 5408	1982 1810 1651 1504 1367	6150 5885 5628 5378 5133	1331 1307 1284 1263 1244

XVI. (continued).

		γ=0·1	18				γ=0"	20	
φ	(x)	(Y)	(т)	(v)	φ	(x)	(Y)	(T)	(v)
25° 24 23 22 21 20	5142 4883 4632 4387 4149 3915	1240 1123 1013 911.8 817.8 730.6	4894 4661 4433 4209 3989 3774	1225 1208 1192 1177 1163 1149	15° 14 13 12 11	2840 2631 2426 2224 2025	388.0 334.0 284.7 240.0 199.6	2758 2561 2366 2174 1984	1099 1089 1080 1071 1062
		γ=0'2			10 98 76	1830 1637 1447 1259 1074	163·3 131·1 102·7 78·0 56·9	1796 1610 1426 1244 1063	1054 1047 1040 1034 1028
ø	(x)	(Y)	(T)	(v)	5 4 3 2	891 709 530 352	39 ^{.2} 24 ^{.9} 13 ^{.9} 6 ^{.2}	883 704 527 351	1022 1017 1012 1008
45° 44 43 42 41	14592 13650 12834 12110 11459	8474 7548 6773 6110 5533	11954 11385 10865 10383 9933	2418 2235 2094 1980 1886	1 0 1 2 3 4	175 0. 174 347 519 690	1.2 0 1.2 6.0 13.6 24.0	175 0 174 348 521 695	1004 1000 997 994 991 989
40 39 38 37 36	10865 10319 9812 9339 8896	5026 4576 4173 3810 3481	9510 9109 8729 8367 8021	1805 1735 1674 1619 1571	5 6 7 8 9	860 1030 1199 1368 1536 1704	37 [•] 4 53 [•] 7 73 [•] 0 95 [•] 2 120 [•] 4 148 [•] 6	\$67 1040 1213 1386 1560 1733	987 985 984 983 982 982
35 34 33 32 31	8477 8081 7705 7346 7003	3183 2910 2661 2433 2223	7689 7370 7063 6766 6479	1527 1487 1450 1417 1386	11 12 13 14 15	1872 2041 2209 2377 2546	179.7 213.9 251.2 291.7 335.4	1908 2083 2258 2434 2612	982 982 982 983 983
30 29 28 27 26	6675 6359 6056 5763 5480	2029 1850 1686 1533 1392	6201 5932 5670 5415 5167	1358 1331 1307 1284 1263	16 17 18 19 20	2715 2885 3055 3226 3398	382·3 432·6 486·3 543·4 604·4	2790 2970 3150 3333 3516	985 987 989 991 994
25 24 23 22 21	5206 4941 4683 4432 4188	1261 1140 1028 924.5 828.4	4924 4688 4456 4230 4008	1243 1224 1207 1190 1175	21 22 23 24 25	3571 3745 3920 4096 4274	669°0 737°5 810°0 886°7 967°7	3702 3889 4078 4269 4463	997 1000 1003 1007 1011
20 19 18 17 16	3951 3719 3492 3270 3053	739 ^{.5} 657 ^{.3} 581 ^{.4} 511 ^{.4} 447 ^{.1}	3791 3577 3368 3161 2958	1160 1146 1134 1121 1110	26 27 28 29 30	4453 4634 4816 5001 5187	1053 1143 1238 1338 1444	4659 4 ⁸ 57 5059 5263 5470	1015 1020 1025 1030 1036

		γ=0:2	20				γ=0*2	22	
¢	(x)	(Y)	(T)	(v)	φ	(x)	(Y)	(T)	(v)
31° 32 33 34 35	5375 5566 5759 5954 6152	1555 1671 1794 1924 2060	5680 5894 6112 6333 6559	1042 1048 1055 1062 1069	40° 39 38 37 36	11314 10703 10144 9628 9148	5318 4814 4369 3973 3618	9689 9265 8866 8488 8128	1916 1828 1753 1688 1630
36 37 38 39 40	6353 6557 6764 6975 7188	2203 2354 2513 2680 2856	6789 7024 7263 7508 7758	1077 1085 1093 1102 1111	35 34 33 32 31	8699 8277 7878 7499 7139	3298 3007 2743 2502 2282	7784 7455 7138 6834 6540	1579 1533 1491 1454 1419
41 42 43 44 45	7406 7627 7852 8081 8315	3042 3238 3444 3662 3891	8014 8277 8546 8821 9104	1121 1131 1141 1152 1163	30 29 28 27 26	6796 6467 6152 5848 5556	2079 1893 1722 1564 1418	6255 5980 5713 5454 5201	1 387 1 358 1 331 1 306 1 283
46 47 48 49 50	8553 8796 9044 9297 9556	4134 4390 4660 4947 5250	9395 9695 10003 10320 10647	1174 1186 1198 1211 1224	25 24 23 22 21 20	5274 5001 4736 4479 4230 3987	1284 1159 1044 937'7 839'4 748'7	4955 4716 4481 4252 4028 3808	1261 1241 1222 1204 1187 1172
51 52 53 54 55	9820 10090 10367 10649 10939	5570 5910 6270 6652 7058	10985 11334 11694 12068 12455	1237 1251 1266 1280 1295			γ=0°2	24	
56 57	11235 11538	7489 7948	12856 13273	1310 1326	φ	(x)	(Y)	(T)	(v)
58 59 60	11849 12167 12493	8435 8955 9508	13707 14158 14628	1342 1358 1375	44° 43 42	16126 14682 13566	9568 8192 7170	12208 11517 10919 10383	3119 2672 2399 2207
		γ=0°2	22		41 40	12644 11851	6353 5676 5100	9894 9441	2061 1945
φ	(x)	(Y)	(T)	(v)	39 38 37 36	11152 10525 9954 9430	4600 4162 3774	9018 8621 8244	1850 1769 1699
45° 44 43 42 41	15901 14637 13614 12747 11989	9575 8332 7361 6566 5 ⁸ 95	12394 11736 11153 10626 10140	2867 2537 2315 2150 2021	35 34 33 32 31	8944 8491 8066 7665 7285	3427 3116 2834 2579 2346	7887 7545 7219 6905 6603	1639 1585 1537 1494 1455

37 X TT	2		7
XVI	101	man	nod
XVI.	100	1111111	ueu I.

		$\gamma = 0.5$	24				γ=0°2	28	
ø	(x)	(Y)	(T)	(v)	ø	(x)	(Y)	(T)	(v)
30° 29 28 27 26	6925 6581 6253 5938 5635	2134 1939 1761 1597 1446	6312 6031 5758 5494 5237	1420 1387 1357 1330 1304 1280	41° 40 39 38 37 36	14763 13421 12381 11519 10776 10121	7911 6763 5905 5219 4649 4164	11075 10439 9887 9391 8938 8517	3003 2579 2318 2134 1995 1884
25 24 23 22 21 20	5344 5062 4791 4527 4272 4024	1307 1180 1061 951.7 851.1 758.3	4987 4744 4506 4274 4047 3825	1280 1258 1238 1219 1201 1184	35 34 33 32 31	9532 8995 8501 8044 7616	3743 3375 3048 2756 2494	8123 7752 7400 7065 6744	1793 1716 1649 1591 1541
	1	γ=0.5			30 29 28 27 26	7214 6835 6476 6134 5808	2257 2043 1847 1669 1507	6437 6141 5856 5581 5314	1495 1453 1416 1383 1352
φ 	(x)	(Y)	(T)	(v)	25	5496	r358	5056	1323
42° 41	14725 13504	8052 6971	11297 10681	2827 2487	24 23 22 21	5197 4909 4631 4363	1221 1096 981°2 875°6	4804 4560 4322 4089	1297 1273 1250 1229
40 39 38	12524 11696 10974	6133 5451 4876	10137 9645 9191	2263 2099 1972	20	4103	778.5	3862	1210
37 36 35 34	10331 9751 9219 8729	4383 3953 3574 3237	8769 8373 7999 7644	1868 1782 1709 1645			γ=0°;	30	
33 32 31	8272 7845 7444	2935 2663 2416	7305 6982 6671	1589 1540 1495	φ	(x)	(Y)	(T)	(v)
30 29 28 27 26	7064 6704 6361 6033 5719	2193 1989 1803 1632 1475	6372 6084 5806 5536 5275	1455 1419 1386 1355 1327	40° 39 38 37 36	14791 13312 12213 11320 10560	7761 6541 5666 4980 4418	10848 10190 9631 9133 8680	3205 2670 2369 2164 2014
25 24 23 22 21 20	5418 5128 4848 4578 4317 4063	1332 1200 1078 966.0 863.0 768.2	5021 4773 4532 4297 4068 3843	1301 1277 1255 1234 1215 1196	35 34 33 32 31	9894 9298 8758 8263 7805	3942 3533 3176 2860 2579	8262 7870 7502 7154 6822	1896 1800 1720 1651 1591

		$\gamma = 0.3$	30				γ=0' <u>(</u>	30	
φ	(x)	(Y)	(т)	·(v)	ø	(x)	(Y)	(T)	(v)
30°	7378	2327	6505	1539	16°	2649	369·8	2755	962
29	6977	2101	6201	1492	17	2810	417·7	2930	962
28	6600	1896	5909	1450	18	2972	468·7	3106	963
27	6242	1710	5628	1412	19	3134	522·8	3284	964
26	5903	1540	5356	1378	20	3296	580·3	3462	965
25	5579	1386	5092	1347	21	3459	641·1	3642	966
24	5269	1244	4 ⁸ 37	1318	22	3622	705·4	3824	968
23	4972	1115	4588	1292	23	3786	773·3	4007	970
22	4686	997°0	4347	1267	24	3950	844·9	4191	972
21	4411	888°5	4111	1245	25	4116	920·3	4378	97 5
20	4145	789.2	3881	1224	26	4282	999°6	4567	978
19	3888	698.1	3656	1204	27	4449	1083	4758	981
18	3639	614.7	3437	1186	28	4618	1171	4951	984
17	3397	538.5	3221	1169	29	4788	1263	5147	988
16	3162	468.8	3010	1153	30	4959	1360	5346	992
15	2933	405.3	2802	1138	31	5131	1461	5547	996
14	2710	347.6	2599	1124	32	5305	1568	5751	1001
13	2492	295.2	2398	1111	33	5481	1680	5959	1006
12	2279	248.0	2201	1099	34	5658	1797	6170	1011
11	2071	205.6	2006	1087	35	5 ⁸ 37	1921	6385	1016
10	1866	167 ^{.7}	1814	1076	36	6019	2050	6603	1022
9	1666	134 ^{.2}	1624	1066	37	6202	2186	6826	1028
8	1469	104 ^{.8}	1437	1057	38	6388	2328	7053	1035
7	1276	79 ^{.4}	1252	1048	39	6576	2477	7284	1041
6	1086	57 ^{.7}	1068	1040	40	6766	2634	7520	1048
5 4 3 2 1	899 715 533 353 176	39 ^{.7} 25 ^{.2} 14 ^{.0} 6 ^{.2} 1 ^{.5}	887 707 528 351 175 0	1032 1024 1018 1011 1005 1000	41 42 43 44 45	6959 7155 7353 7555 7760	2799 2973 3155 3346 3547	7762 8009 8261 8520 8785	1055 1063 1071 1079 1087
I 2 3 4 5	0 174 346 516 685 853	1.5 6.0 13.5 23.8 37.0	174 347 520 692 864	995 990 986 982 979	46 47 48 49 50	7968 8179 8394 8613 8836	3759 3982 4216 4464 4724	9057 9336 9622 9917 10221	1096 1105 1115 1124 1134
6	1020	53.0	1035	976	51	9062	4999	10533	1144
7	1185	71.9	1206	973	52	9293	5289	10856	1155
8	1350	93.6	1377	970	53	9528	5595	11189	1166
9	1514	118.1	1548	968	54	9767	5919	11532	1177
10	1677	145.4	1719	966	55	10011	6261	11888	1188
11	1840	175.6	1891	965	56	10260	6623	12256	1200
12	2002	208.6	2063	964	57	10514	7006	12637	1211
13	2164	244.5	2235	963	58	10772	7413	13032	1223
14	2326	283.3	2408	962	59	11036	7843	13443	1236
15	2487	325.1	2581	962	60	11305	8300	13870	1248

	2	v=0.3	5				$\gamma = 0.7$	ło	
φ	(x)	(Y)	(т)	(v)	φ	(x)	(Y)	(т)	(v)
37° 36	13690 12225	6512 5427	9864 9236	3216 2638	20° 19 18	4379 4089 3811	850 [.] 1 747 [.] 4 654 [.] 3	3986 3747 3515	1304 1275 1249
35 34 33	11159 10301 9574	4666 4076 3595	8707 8237 7810	2326 2119 1968	17 16	3544 3287	570°1 493°9	3288 3067	1225 1203
32 31	8939 8372 7858	3190 2842	7415 7046 6699	1851 1756 1677	15 14 13	3038 2798 2565	425.0 362.9 307.0	2851 2640 2432	1183 1164 1146
30 29 28 27	7387 6952 6546	2539 2273 2036 1825	6369 6056 5756	1610 1551 1500	12 11 10	2339 2120 1905	256.9 212.2 172.5	2229 2029 1833	1130 1114 1100
26 25	6165 5806	1635 1463	5467 5190	1455 1414	9 8 7	1697 1493 1294	137.6 107.1 80.9	1639 1448 1260	1087 1074 1063
24 23 22	5466 5143 4834	1308 1168 1040	4922 4663 4412	1378 1345 1314	6 5 4	1099 908	58·6	1075 891	1052 1042
2I 20	4539 4256	923 [.] 8 817 [.] 9	4168 3931	1287 1261	4 3 2 1	720 536 354 176	25.4 14.1 6.2 1.5	709 530 352 175	1032 1023 1015 1007
		γ=0·4	ło		0 I 2	0 173 344	0 1.5 6.0	0 174 347	1000 993 987
φ	(x)	(Y)	(т)	(v)	3 4 5	514 681 846	13.4 23.6 36.6	519 690 860	981 976 971
34° 33 32 31	12157 10889 9938 9161	5144 4304 3697 3221	8813 8250 7767 7335	2958 2480 2207 2022	6 7 8 9 10	1010 1172 1333 1493 1651	52.4 70.9 92.0 115.9 142.5	1030 1200 1369 1537 1706	966 962 958 955 952
30 29 28 27 26	8498 7914 7391 6916 6478	2830 2500 2215 1968 1750	6940 6574 6230 5905 5596	1884 1776 1689 1615 1552	11 12 13 14 15	1809 1966 2122 2277 2432	171.7 203.6 238.2 275.5 315.6	1875 2044 2213 2382 2552	949 947 945 943 942
25 24 23 22 21	6073 5694 5338 5002 4683	1556 1383 1229 1089 963*7	5302 5019 4747 4485 4231	1498 1450 1407 1369 1335	16 17 18 19 20	2587 2741 2895 3049 3203	35 ^{8·5} 404·2 452·7 504·2 55 ^{8·7}	2722 2894 3065 3238 3412	940 940 939 939 939 939

XVI. (continued).

XVI. (continued).

		γ=0 [.] 4	ŀo			2	γ=0'4	5	
φ	(x)	(Y)	(T)	(v)	φ	(x)	(Y)	(T)	(v)
21° 22 23	3357 3511 3665	616·2 676·9 740·8	35 ⁸ 7 3763 3941	939 940 941	32° 31	1 1924 10463	4776 3 ⁸ 79	8344 7754	3276 2592
24 25	3820 3975	808.1 878.7	4120 4301	941 942 943	30 29 28	9448 8646 7972	3281 2826 2460	7265 6836 6445	2257 2044 1892
26 27 28	4130 4287 4444	953.0 1031 1113	4483 4668 4855	945 947 949	27 26	7387 6866	2155 1895	6085 5748	1775 1682
29 30 31	4601 4760 4919	1198 1288 1382	5043 5234 5428	952 955 958	25 24 23 22	6395 5964 5565 5194	1670 1474 1300 1147	5430 5129 4841 4566	1605 1540 1484 1435
32 33 34	5080 5242 5405	1480 1583 1691	5625 5824 6026	961 965 969	21 20	4845 4517	1009 886.5	4301 4045	1391 1353
35 36 37	5569 5735 5902	1804 1923 2046	6232 6441 6653	973 977 982			γ=0:ξ	50	
38 39 40	6072 6242 6415	2176 2312 2454	6870 7090 7315	987 992 997	φ	(x)	(Y)	(т)	(v)
41 42 43	6589 6766 6945	2603 2760 2923	7545 7779 8019	1003 1009 1015	29° 28	9841 8820	33 ⁸ 7 2832	7211 6731	2617 2252
44 45	7126	3095 3275	8264 8515	1022 1029	27 26	8026 7364	2419 2089	6311 5932	2028 1871.
46 47 48 49	7495 7684 7875 8069	3465 3663 3872 4091	8772 9035 9306 9583	1036 1043 1050 1058	25 24 23 22	6794 6288 5831 5414	1816 1586 1387 1214	5582 5255 4947 4655	1752 1658 1580 1515
50	8265 8465	4322	9869 10162	1066	2I 20	5028 4669	1062 927 [.] 8	4376	1459
52 53 54	8668 8875 9084	4820 5088 5372	10465 10777 11098	1083 1092 1101	19 18 17	4333 4016 3716	808·7 702·6 607·9	3852 3604 3364	1367 1329 1295
55 56 57	9298 9514 9735	5671 5986 6319	11430 11774 12129	1110 1119 1128	16 15 14	3430 3158 2897	523.4 447.8 380.3	3131 2905 2685	1264 1235 1210
58 59 60	9959 9959 10187 10419	6671 7043 7437	12497 12879 13275	1138 1148 1158	13 12 11	2647 2406 2173	320.2 266.7 219.4	2470 2260 2054	1186 1165 1145

XVI. (continued).

		γ=0:ξ	50			2	v=0'5	50	
ø	(x)	(Y)	(T)	(v)	φ	(x)	(Y)	(т)	(v)
10° 9 8 7 6	1948 1730 1518 1312 1112	177 ^{.6} 141 ^{.1} 109 ^{.5} 82 ^{.4} 59 ^{.6}	1852 1655 1460 1269 1081	1 126 1 109 1093 1079 1065	31° 32 33 34 35	4733 4883 5033 5184 5337	1313 1405 1501 1601 1705	5321 5511 5703 5898 6095	925 927 930 932 936
5 4 3 2 I	916 725 539 356 176	40.7 25.7 14.2 6.3 1.5	895 712 531 352 175	1052 1040 1029 1019 1009	36 37 38 39 40	5490 5644 5800 5957 6116	1815 1929 2049 2173 2304	6296 6501 6708 6920 7136	939 943 947 951 955
0 I 2 3 4 5	0 173 343 511 676 839	0 1.5 6.0 13.3 23.4 36.2	0 174 346 517 688 857	1000 992 984 976 970 963	41 42 43 44 45	6276 6437 6600 6765 6932	2441 2584 2733 2890 305 4	7355 7579 7808 8042 8282	960 965 970 975 981
6 7 8 9 10	1000 1159 1317 1472 1627	51.7 69.8 90.5 113.8 139.7	1025 1193 1360 1527 1693	957 952 947 943 938	46 47 48 49 50	7101 7272 7445 7620 7798	3226 3406 3594 3792 4000	8526 8777 9035 9298 9570	986 992 999 1005 1012
11 12 13 14	1780 1932 2082 2232	168.0 198.9 232.3 268.3	1859 2026 2192 2358	935 931 928 925	51 52 53 54 55	7978 8160 8345 8533 8723	4219 4448 4689 4943 5210	9848 10135 10430 10734 11048	1019 1026 1033 1041 1048
15 16 17 18 19	2381 2530 2677 2825 2971	306.9 348.0 391.8 438.2 487.3	2525 2692 2859 3027 3196	923 921 919 918 917	56 57 58 59 60	8916 9112 9312 9514 9719	5491 5787 6100 6430 6779	11373 11708 12055 12414 12788	1056 1064 1072 1081 1089
20	3118	539.1	3366	916 915	γ=0 [.] 60				
22 23 24 25	3410 3556 3702 3848	595 0 651 3 711 8 775 4 842 0	3708 3881 4055 4230	915 915 915 915 916	φ	(x)	(Y)	(т)	(v)
26 27 28 29 30	3995 4142 4289 4436 4585	911.8 985.0 1062 1142 1226	4407 4586 4767 4949 5134	916 918 919 920 922	26° 25 24 23 22 21	9334 8120 7261 6577 6000 5497	2908 2327 1936 1638 1399 1200	6533 6024 5599 5222 4879 4560	2970 2379 2081 1890 1752 1647

XVI. (continued).

		γ=0.6	50				$\gamma = 0.6$	50	
ø	(x)	(Y)	(T)	(v)	ø	(x)	(Y)	(T)	(v)
20°	5048	1033	4261	1563	21°	3179	573 ^{.5}	3489	893
19	4642	888.5	3979	1493	22	3318	628 [.] 3	3656	892
18	4268	763.5	3710	1434	23	3457	685 ^{.8}	3824	891
17	3923	654.4	3452	1383	24	3595	746 ^{.0}	3994	891
16	3600	558.8	3204	1338	25	3734	809 [.] 2	4165	891
15	3296	474.6	2966	1299	26	3872	875°2	4337	891
14	3010	400.5	2735	1264	27	4011	944°3	4511	891
13	2738	335.2	2510	1233	28	4150	1017	4686	892
12	2479	277.7	2293	1204	29	4289	1092	4864	893
11	2231	227.3	2081	1179	30	4428	1171	5043	894
10	1993	183.3	1874	1155	31	4568	1253	5224	895
9	1765	145.0	1671	1134	32	4708	1339	5408	897
8	1545	112.1	1473	1114	33	4849	1429	5593	899
7	1332	84.0	1278	1096	34	4990	1522	5782	901
6	1126	60.5	1087	1078	35	5132	1620	5973	904
5 4 3 2 1 0	925 731 542 357 176 0	41·3 25·9 14·4 6·3 1·6 0	900 715 533 353 176 0	1063 1049 1035 1023 1011 1000	36 37 38 39 40	5275 5419 5564 5709 5856	1722 1828 1939 2055 2176	6167 6364 6564 6768 6976	906 909 912 916 919
I	173	1.2	174	990	41	6004	2303	7187	923
2	342	5.9	346	981	42	6154	2435	7402	927
3	508	13.2	516	972	43	6304	2573	7622	931
4	672	23.2	685	964	44	6456	2717	7847	936
5	833	35.8	853	956	45	6610	2868	8077	941
6	991	51°1	1020	949	46	6765	3026	8311	945
7	1147	68°9	1187	942	47	6922	3192	8552	951
8	1301	89°1	1352	936	48	7081	3365	8798	956
9	1453	111°8	1517	931	49	7241	3546	9051	962
10	1603	137°0	1681	926	50	7403	3736	9310	967
11	1752	164.6	1845	921	51	7568	3935	9576	973
12	1899	194.5	2008	916	52	7734	4144	9850	979
13	2045	226.9	2172	913	53	7902	4364	10131	986
14	2190	261.6	2335	909	54	8073	4595	10422	992
15	2334	298.8	2499	906	55	8246	4837	10721	999
16	2476	338·3	2663	903	56	8421	5092	11030	1006
17	2618	380·3	2827	900	57	8599	5361	11349	1013
18	2759	424·8	2991	898	58	8779	5644	11679	1020
19	2900	471·8	3156	896	59	8962	5942	12021	1027
20	3040	521·4	3322	894	60	9147	6257	12375	1034

		γ=0.3	70	_			γ=0.7	70	
φ	(x)	(Y)	(т)	(v)	φ	(x)	(Y)	. (т)	(v)
23° 22 21	8132 7012 6221	2201 1736 1424	5692 5215 4815	2856 2283 1997	21 [°] 22 23 24	3101 3233 3366 3498	555.0 607.3 662.1 719.5	3444 3608 3772 3938	873 872 870 869
20 19 18	5590 5059 4595	1188 1000 844.6	4461 4138 3838	1814 1683 1582	25 26	3630	779 ^{.6} 842 ^{.3}	4104	869 868
17 16	4180 3805	714 ^{.0} 602 ^{.7}	3556 3289	1 501 1435	27 28 29	3893 4024 4156	907.9 976.3 1048	4442 4612 4785	868 868 868
15 14 13	3460 3140 2841	507°0 424°2 352°5	3035 2791 2556	1 378 1 330 1 288	30 31	4287	1122	4959	869 870
12 11	2561 2295	290·2 236·2	2329 2109	1250 1217	32 33 34	4551 4684 4817	1281 1365 1453	5313 5494 5676	871 872 874
10 9 8	2043 1803 1573	189 [.] 5 149 [.] 2 114 [.] 8	1896 1689 1486	1187 1160 1136	35 36	4950 5085	1545 1641	5861 6049	876 878
76	1352 1140	85.8	1288 1094	1113	37 38 39	5219 5355 5491	1741 1845 1953	6240 6434 6631	880 882 885
5 4 3 2	935 737 545 358	41.8 26.2 14.5 6.3	904 718 534 354	1074 1057 1041 1026	40 41 42	5628 5766 5906	2066 2184 2307	6832 7036 7244	888 891 895
I O I	177 0 173	1.6 0 1.2	176 0 174	1013 1000 988	43 44 45	6046 6187 6331	2436 2570 2710	7456 7673 7894	898 902 906
2 3 4	341 506 668	5'9 13'1 23'0	345 515 683	977 967 958	46 47 48	6474 6620	2857 3010	8120 8352	910 915
5	826 982	35.2	850 1016 1180	949 941	48 49 50	6766 6915 7065	3170 3338 3514	8589 8832 9081	920 925 930
7 8 9 10	1135 1286 1434 1581	67.9 87.8 110.0 134.5	1344 1507 1669	933 926 919 913	51 52	7216 7370 7525	3698 3891	9337 9599 9870	9 35 940
10 11 12	1726 1869	161·3 190·4	1831 1992	908 903	53 54 55	7525 7682 7841	4093 4305 4528	10148 10435	946 952 957
13 14 15	2010 2150 2289	221·7 255·4 291·2	2153 2313 2474	898 894 890	56 57 58	8002 8165 8330	4762 5009 5268	10731 11037 11353	963 970 976
16 17	2426 2563	329.4 369.8	2635 2796	886 883	59 60	8498 8667	5541 5829	1 1680 1 2019	982 989
18 19 20	2699 2833 2967	412.6 457.6 505.1	2957 3119 3281	880 877 875				-	

XVI. (continued).

		γ=0 [.] 8	30				γ=0 [.] 8	30	
φ	(x)	(Y)	(т)	(v)	¢	(x)	(Y)	(T)	(v)
20°	6536	1476	4764	2393	21°	3028	538.0	3402	855
19	5695	1178	4358	2032	22	3155	588.1	3562	853
18	5051	962.6	4004	1820	23	3282	640.6	3723	851
17	4521	795.0	3685	1675	24	3408	695.4	3885	850
16	4063	659.5	3391	1567	25	3534	752.7	4048	848
15	3659	547 [•] 2	3115	1481	26	3659	812.6	4212	847
14	3294	452 [•] 9	2854	1412	27	3785	875.0	4377	847
13	2961	372 [•] 8	2606	1353	28	3910	940.1	4544	846
12	2653	304 [•] 5	2369	1304	29	4035	1008	4712	846
11	2366	246 [•] 2	2141	1261	30	4160	1079	4882	846
10	2097	196·3	1920	1223	31	4285	1152	5053	847
9	1844	153·8	1707	1190	32	4410	1229	5226	847
8	1603	117·8	1500	1160	33	4535	1309	5402	848
7	1374	87·6	1298	1133	34	4661	1392	5579	849
6	1155	62·6	1101	1108	35	4787	1479	5759	851
5 4 3 2 I 0	945 743 548 360 177 0	42°4 26°5 14°6 6°3 1°6	909 721 536 354 176 0	1086 1066 1047 1030 1015 1000	36 37 38 39 40	4914 5041 5168 5297 5426	1569 1663 1761 1863 1970	5942 6127 6315 6507 6701	852 854 856 858 861
I	172	1.5	173	987	41	5555	2080	6899	864
2	340	5.9	345	974	42	5686	2196	7101	867
3	504	13.0	514	963	43	5818	2316	7306	870
4	663	22.8	681	952	44	5950	2442	7516	873
5	820	35.1	847	942	45	6084	2573	7730	873
6	973	49 ^{.9}	1011	933	46	6218	2710	7948	880
7	1124	67 ^{.0}	1174	924	47	6354	2854	8172	884
8	1271	86 [.] 4	1336	916	48	6491	3003	8401	888
9	1417	108 ^{.2}	1497	909	49	6630	3160	8636	893
10	1560	132 ^{.1}	1657	902	50	6769	3323	8876	897
11	1701	158·2	1817	896	51	6911	3495	9123	902
12	1840	186·5	1976	890	52	7053	3674	9377	907
13	1977	216·9	2134	884	53	7198	3862	9637	912
14	2113	249·5	2293	879	54	7343	4059	9906	917
15	2247	284·2	2451	875	55	7490	4266	10182	922
16	2380	321.0	2609	870	56	7640	4483	10467	928
17	2511	360.0	2767	867	57	7791	4712	10761	933
18	2642	401.2	2925	863	58	7944	4952	11065	939
19	2771	444.5	3084	860	59	8099	5204	11380	945
20	2900	490.1	3243	857	60	8256	5471	11706	951

37377	1	7 \
	(continu	ed)
AT A TO	10011001100	ou j.

		γ=0.č	90				γ=0.è)0	
φ	(x)	(Y)	(T)	(v)	φ	(x)	(Y)	(т)	(v)
18° 17 16	5812 5016 4410	1169 917°9 738°3	4247 3 ⁸ 57 3518	2331 1973 1766	21° 22 23	2961 3083 3204	522·3 570·4 620·8 673·4	3363 3520 3677 3836	838 836 834 832
15 14 13	3911 3482 3102	599'7 488'5 397'2	3211 2929 2664	1624 1518 1435	24 25 26	3325 3446 3566	728.3	3995 4156	830 829
12 11	2759 2446	321.2	2413 2175	1368 1312 1264	27 28 29	3685 3805 3924	845 ^{.2} 907 ^{.3} 972 ^{.0}	4317 4480 4644	828 827 826 826
10 9 8 7 6	2157 1888 1635 1396	203.9 158.8 121.0 89.6	1946 1727 1514 1308	1222 1186 1153	30 31 32	4043 4162 4281	1039 1110 1183	4810 4977 5146	826 826
6 5 4	955 749	63.8 43.0 26.8	914 723	1124 1098 1075	33 34 35	4400 4520 4640	1259 1338 1420	5317 5490 5666	827 828 829
3 2 1	551 361 177	14.7 6.4 1.6	537 355 176	1054 1034 1016	36 37 38 39	4760 4880 5001 5122	1505 1594 1687 1784	5843 6024 6207 6392	830 831 833 835
0	0	0	0	1000	40	5244	1884	6582	837
I 2 3 4 5	172 339 501 659 814	1.5 5.9 12.9 22.6 34.8	173 344 512 679 844	985 971 958 946 935	41 42 43 44 45	5366 5490 5614 5738 5864	1989 2098 2211 2330 2453	6774 6970 7169 7373 7580	839 842 844 847 850
6 7 8 9 10	965 1113 1257 1399 1539	49'3 66'1 85'2 106'4 129'8	1007 1168 1329 1488 1646	925 916 907 898 891	46 47 48 49 50	5991 6119 6247 6377 6508	2582 2717 2858 3004 3158	7793 8009 8231 8459 8692	854 857 861 865 869
11 12 13 14 15	1677 1812 1945 2077 2207	155 ^{.3} 182 ^{.8} 212 ^{.4} 244 ^{.0} 277 ^{.6}	1804 1961 2117 2273 2428	884 877 871 866 861	51 52 53 54 55	6641 6775 6910 7046 7184	3319 3487 3663 3847 4041	8931 9176 9428 9688 9955	873 877 882 887 892
16 17 18 19 20	2335 2463 2589 2714 2838	313·2 350·9 390·6 432·4 476·3	2584 2739 2895 3050 3206	856 852 848 844 844 841	56 57 58 59 60	7324 7465 7607 7752 7898	4244 4457 4681 4917 5165	10231 10515 10809 11112 11427	897 902 907 912 918

		$\gamma = 1.0$)				$\gamma = 1$		
φ	(x)	(Y)	(т)	(v)	φ	(x)	(Y)	(т)	(v)
17° 16	5941 4936	1161 862.7	4127 3691	2763 2132	21 [°] 22	2898 3015	507·8 554·2	3326 3480	823 820
15 14 13	4254 3720 3272	673·4 534·9 427·4	3333 3018 2730	1844 1667 1542	23 24 25	3132 3248 3364	602.6 653.1 705.8	3634 3790 3946	817 815 813
12 11	2883 2537	341·1 270·6	2464 2213	1447 1372	26 27 28	3479 3594 3708	760.7 817.9 877.4	4103 4261 4420	811 810 809
10 9 8 7	2224 1936 1670 1421	212·5 164·3 124·5 91·7	1975 1748 1530 1319	1310 1258 1214	29 30	3822 3936	939.3 1004	4581 4743	808 808
7 6 5	965	65·0 43·7	919	1175 1142 1111	31 32 33 34	4050 4163 4277 4391	1071 1140 1213 1288	4906 5071 5238 5407	807 807 807 808
4 3 2	755 554 362	27°1 14°8 6°4	726 539 356	1085 1060 1038	35 36	4505 4619	1367 1448	5578 5752	808 809
I O	178 0	0 1.6	176 0	1018	37 38 39 40	4733 4848 4964 5079	1533 1621 1712 1808	5928 6106 6287 6471	810 812 813 815
I 2 3 4 5	172 338 499 655 808	1.5 5.8 12.9 22.4 34.4	173 343 511 677 841	983 968 954 941 929	41 42 43 44 45	5195 5312 5430 5548 5667	1907 2010 2118 2230 2347	6659 6849 7044 7242 7444	817 819 822 824 827
6 7 8 9 10	957 1102 1244 1383 1520	48.7 65.3 84.0 104.8 127.6	1002 1163 1321 1479 1636	918 907 898 889 889 880	46 47 48 49 50	5787 5907 6029 6152 6275	2469 2596 2729 2868 3013	7650 7861 8077 8297 8524	830 833 837 840 844
11 12 13 14 15	1654 1785 1915 2043 2169	152°5 179°3 208°1 238°8 271°4	1791 1946 2100 2254 2407	873 866 859 853 847	51 52 53 54 55	6400 6526 6653 6782 6912	3164 3322 3488 3662 3844	8756 8994 9239 9491 9750	848 852 856 860 865
16 17 18 19 20	2294 2417 2539 2659 2779	305.9 342.4 380.8 421.2 463.5	2560 2713 2866 3019 3172	842 838 833 829 826	56 57 58 59 60	7043 7176 7310 7445 75 ⁸ 2	4035 4235 4446 4667 4900	10017 10293 10577 10872 11177	869 874 879 884 889

В.

XVI. (continued).

		$\gamma = 1.1$	[$\lambda = 1.1$	[
ø	(x)	(Y)	(т)	(v)	ø	(x)	(Y)	(т)	(v)
15° 14 13 12 11	4789 4044 3487 3032 2642	793 [.] 3 600 [.] 3 466 [.] 5 365 [.] 4 286 [.] 1	3502 3130 2810 2521 2255	2272 1898 1688 1548 1445	25° 27 28 29 30	3399 3509 3619 3728 3837	737 ^{.9} 792 ^{.8} 850 ^{.0} 909 ^{.4} 971 ^{.2}	4053 4208 4364 4521 4680	795 794 792 791 791
10 9 8 7 6	2299 1989 1707 1446 1204	222°3 170°5 128°3 93°9 66°3	2006 1770 1546 1331 1124	1365 1300 1245 1199 1160	31 32 33 34 35	3946 4055 4164 4273 4382	1035 1102 1171 1243 1318	4840 5001 5165 5330 5497	790 790 790 790 790 790
5 4 3 2 1	976 761 558 364 178	44°3 27°4 14°9 6°4 1°6	924 729 541 356 176	1125 1094 1067 1042 1020	36 37 38 39 40	4491 4600 4709 4819 4929	1396 1477 1561 1648 1739	5667 5839 6013 6190 6370	791 792 793 794 796
0 I 2 3 4	0 171 337 497 652 802	0 1.5 5.8 12.8 22.3	0 173 343 510 675	982 965 950 935	41 42 43 44 45	5040 5151 5263 5375 5488	1834 1932 2035 2141 2252	6552 6738 6928 7121 7318	797 799 801 804 806
5	949 1091	34·1 48·2 64·5	837 998 1157	922 910 899			γ = 1.3	2	
7 8 9 10	1231 1367 1501	82.8 103.2 125.5	1314 1470 1625	899 889 879 870	φ	(x)	(Y)	(т)	(v)
11 12 13 14 15	1632 1760 1887 2011 2134	149 ^{.8} 176 ^{.0} 204 ^{.0} 233 ^{.9} 265 ^{.6}	1779 1932 2084 2235 2387	862 855 848 841 835	14° 13 12 11	4553 3777 3217 2766	707.6 520.8 396.4 304.6	3287 2909 2589 2303	2355 1914 1685 1537
16 17 18 19 20	2255 2374 2492 2609 2724	299 ^{.1} 334 ^{.4} 371 ^{.6} 410 ^{.7} 451 ^{.6}	2537 2688 2838 2989 3139	830 825 820 816 812	10 9 8 7 6	2384 2048 1747 1474 1222	233.6 177.4 132.4 96.3 67.6	2040 1795 1564 1343 1132	1429 1347 1280 1225 1179
21 22 23 24 25	2839 2952 3065 3177 3288	494°4 539°1 585°7 634°4 685°1	3290 3442 3593 3746 3899	808 805 802 800 797	5 4 3 2 1 0	987 768 561 365 178 0	45°0 27°7 15°0 6°5 1°6 0	929 733 542 357 176 0	1139 1104 1074 1047 1022 1000

XVI. (continued).

		$\gamma = 1.2$	2				$\gamma = 1$	3	
ø	(x)	(Y)	(т)	(v)	ø	(x)	(Y)	(T)	(v)
1° 2 3	171 336 494	1.2 5.8 12.7	173 342 509	980 962 945	13° 12 11	4222 3460 2917	607.8 438.4 327.7	3046 2673 2359	2325 1889 1657
4 5	648 796	22°1 33°8	673 834	930 916	IO	2482 2114	246·9 185·2	2079 1822	1508 1401
6 7 8	941 1081 1218	47'7 63:7 81'7	994 1152 1307	903 891 880	98 76	1792 1503 1241	137°0 99°0 69°0	1582 1356 1141	1320 1254 1200
9 10	1352 1483	101.7 123.5	1462 1615	870 861	5 4	999 775	45 ^{.7} 28 ^{.1}	934 736	1154 1115
11 12 13	1611 1736 1859 1981	147 [•] 3 172 [•] 8 200 [•] 1 229 [•] 2	1767 1918 2068 2218	852 844 837 830	32	565 366 179	15°2 6°5 1°6	544 358 177	1081 1051 1024
14 15 16	2100	260°0 292°6	2367	823 818	0 I 2	0 171 335	0 1.5 5.8	0 173 342	1000 978 959
17 18 19	2333 2447 2561	326·9 363·0 400·8	2664 2812 2960	812 807 803	3 4 5	492 644 791	12.6 21.9 33.5	508 671 831	941 925 910
20 21	2672 2783	440.4 481.8	3108 3257	798 795	6 7 8	933 1071 1206	47°2 62°9 80°6	990 1146 1301	896 884 872
22 23 24 25	2893 3002 3110 3217	525°0 570°1 617°1 666°0	3405 3555 3704 3855	791 788 785 783	9 10	1337 1465	100°2 121°6	1454 1605	862 852
26 27	3324 3430	716.8	4006 4158	781 779	11 12 13	1590 1713 1833	144 [.] 8 169 [.] 8 196 [.] 5 224 [.] 8	1756 1905 2053	843 834 826
28 29 30	3535 3640 3745	824.7 881.9 941.2	4311 4465 4621	777 776 775	14 15	1951 2067	254.8	2201 2348	819 812
31 32 33	3850 3955 4059	1003 1067 1133	4778 4936 5096	774 774 773	16 17 18 19	2182 2294 2405 2515	286.5 319.9 354.9 391.6	2495 2641 2787 2933	806 800 795 790
34 35	4163 4268	1203 1274	5258 5422	773	20 21	2624 2731	430°0 470°1	3079 3225	786 782
36 37 38 39 40	4372 4477 4582 4687 4792	1349 1426 1507 1590 1677	5587 5755 5926 6099 6275	774 774 775 776 778	22 23 24 25	2837 2942 3047 3150	511.9 555.5 600.9 648.2	3371 3518 3665 3813	778 775 772 769
41 42 43	4898 5004 5111 5218	1767 1861 1959 2061	6453 6635 6820 7009	779 781 783 785	26 27 28 29	3253 3356 3458 3559	697·3 748·3 801·4 856·4	3961 4111 4261 4412	767 765 763 762
44 45	5326	2167	7201	787	30	3660	913.6	4565	760

17 - 2

		$\gamma = 1.3$	3				γ = 1·2	ł	
ø	(x)	(Y)	(т)	(v)	φ	(x)	(Y)	(т)	(v)
31° 32 33 34 35	3761 3861 3962 4062 4162	973°0 1035 1099 1165 1234	4719 4 ⁸ 74 5031 5190 5350	759 759 758 758 758 758	6° 7 8 9 10	926 1062 1194 1323 1448	46.7 62.2 79.6 98.8 119.8	986 1141 1294 1446 1596	890 877 865 853 843
36 37 38 39 40	4263 4363 4464 4564 4665	1 305 1 380 1 457 1 5 37 1 620	5513 5678 5845 6014 6186	758 759 759 760 761	11 12 13 14 15	1571 1691 1808 1923 2037	142°5 166°9 193°0 220°6 249°9	1745 1892 2039 2185 2330	833 825 816 809 802
41 42 43 44 45	4767 4868 4971 5073 5176	1707 1797 1891 1988 2089	6361 6539 6720 6905 7093	763 764 766 768 770	16 17 18 19 20	2148 2258 2366 2472 2577	280·8 313·2 347·3 382·9 420·2	2475 2619 2763 2907 3050	795 790 784 779 774
		$\gamma = 1.7$	4		2 I 22 23 24 25	2681 2784 2886 2987 3088	459'1 499'7 541'9 585'9 631'6	3194 3338 3483 3628 3773	770 766 763 760 757
φ	(x)	(Y)	(T)	(v)	26 27	3187 3286	679 · 1 728·4	3919 4066	754 752
12 ⁰ 11	3817 3110	502°1 357°8	2784 2426	2250 1827	28 29 30	3385 3483 3580	779 [.] 7 832 [.] 8 888 [.] 0	4214 4362 4512	750 748 747
10 9 8 7 6	2599 2189 1841 1535 1261	263.0 194.2 142.1 101.8 70.5	2123 1852 1602 1370 1150	1608 1466 1364 1285 1222	31 32 33 34 35	3678 3774 3871 3968 4064	945°3 1005 1066 1130 1197	4664 4816 4970 5126 5283	746 745 744 744 744
5 4 3 2 1	1012 782 568 368 179 0	46.5 28.4 15.3 6.5 1.6	940 739 546 358 177	1170 1126 1088 1055 1026 1000	36 37 38 39 40	4161 4258 4354 4451 4548	1266 1337 1411 1488 1568	5443 5604 5768 5934 6103	744 744 745 745 745 746
I 2 3 4 5	171 333 490 640 7 ⁸ 5	1.5 5.7 12.6 21.7 33.2	173 341 507 669 829	977 956 937 920 904	41 42 43 44 45	4646 4743 4841 4940 5039	1652 1738 1828 1921 2019	6275 6449 6626 6807 6991	747 749 750 752 754

XVI. (continued).

XVI. (continued).

		$\gamma = 1.5$	5				$\gamma = 1.5$	5	
φ	(x)	(Y)	(T)	(v)	ø	(x)	(Y)	(T)	(v)
11° 10 9 8 7 6	3373 2743 2275 1895 1569 1282	400°5 283°2 204°8 147°8 104°9 72°2	2511 2174 1885 1624 1384 1159	2099 1741 1545 1415 1320 1246	31° 32 33 34 35	3599 3693 3787 3880 3973	919 [.] 6 977 [.] 0 1037 1098 1162	4611 4761 4912 5065 5220	733 732 731 731 731 731
5 4 3 2 1	1025 789 572 369 179	47·3 28·8 15·4 6·6 1·6	946 742 547 359 177	1187 1137 1095 1059 1028	36 37 38 39 40	4066 4159 4253 4346 4439	1229 1298 1369 1444 1521	5377 5535 5696 5859 6025	731 731 731 732 732
0 I 2 3 4 5	0 170 332 488 637 780	0 1.5 5.7 12.5 21.6 32.9	0 172 341 505 667 826	1000 975 953 933 915 898	41 42 43 44 45	4533 4627 4722 4816 4911	1601 1684 1770 1860 1954	6193 6364 6538 6715 6896	733 735 736 738 738 739
6 7 8	918 1053 1183	46·2 61·5 78·6	982 1136 1288 1438	883 870 857 845	φ	(x)	$\gamma = 1.0$	5 .	(v)
9 10 11 12 13 14 15	1309 1432 1552 1669 1784 1897 2007	97 ^{.5} 118 ^{.1} 140 ^{.3} 164 ^{.2} 189 ^{.6} 216 ^{.6} 245 ^{.2}	1430 1587 1734 1880 2025 2169 2312	825 825 815 807 799 792	10° 9 8 7 6	2927 2377 1955 1606 1305	309.8 217.5 154.3 108.3 73.9	2236 1922 1648 1399 1169	1933 1644 1475 1359 1272
16 17 18 19 20	2116 2223 2328 2431 2534	275 [.] 3 306 [.] 9 340 [.] 1 374 [.] 7 411 [.] 0	2455 2598 2740 2881 3023	785 779 773 768 763	5 4 3 2 1 0	1038 797 576 371 180 0	48 ^{.2} 29 ^{.1} 15 ^{.6} 6 ^{.6} 1 ^{.6} 0	952 746 549 360 177 0	1204 1149 1103 1064 1030 1000
2 I 22 23 24 25	2635 2735 2834 2932 3029	448.8 488.1 529.1 571.8 616.1	3165 3307 3449 3592 3735	759 755 751 748 745	1 2 3 4 5	170 331 485 633 775	1.5 5.7 12.4 21.4 32.6	172 340 504 665 823	974 950 929 910 893
26 27 28 29 30	3125 3221 3316 3411 3505	662°1 709°9 759°4 810°9 864°3	3879 4023 4169 4315 4462	742 740 738 736 736 734	6 7 8 9 10	911 1044 1171 1296 1416	45.7 60.8 77.6 96.2 116.4	978 1131 1282 1430 1578	877 863 850 838 826

		$\gamma = 1.6$	5				$\gamma = 1.7$	7	
φ	(x)	(Y)	(T)	(v)	φ	(x)	(Y)	(T)	(v)
11° 12 13 14 15 16 17 18 19 20 21	1534 1649 1761 1871 1979 2085 2189 2292 2393 2492 2590	138.2 161.5 186.4 212.9 240.7 270.1 300.9 333.2 367.0 402.3 439.0	1723 1868 2011 2154 2296 2437 2577 2717 2857 2997 3137	816 807 798 790 782 776 769 763 758 753 758	10° 9 8 7 6 5. 4 3 2 1 0	3186 2501 2025 1647 1329 1052 804 579 372 180 0	348.4 233.2 161.9 112.1 75.8 49.0 29.5 15.7 6.6 1.6 0	2316 1966 1675 1416 1179 958 749 551 361 177 0	2254 1775 1546 1403 1301 1223 1162 1111 1068 1032 1000
22 23 24 25	2688 2784 2879 2973	477'3 517'1 558'5 601'5	3277 3417 3558 3699	744 740 737 734		1	γ = 1.8	3	1
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	3067 3160 3252 3344 3435 3526 3617 3707 3798 3888 3978 4068 4158 4248 4338 4429 4519 4610 4702 4793	646 [•] 2 692 [•] 5 740 [•] 6 790 [•] 4 842 [•] 1 895 [•] 7 951 [•] 2 1009 1069 1131 1195 1261 1330 1402 1476 1554 1634 1717 1804 1894	3840 3983 4126 4270 4415 4561 4709 4858 5008 5160 5314 5470 5628 5788 5788 5951 6116 6284 6455 6629 6807	731 729 726 724 723 721 720 719 719 719 718 718 718 718 718 718 718 718 718 718	φ 0° 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10	(x) 2658 2105 1693 1356 1067 813 583 374 180 0 169 329 481 626 765 898 1026 1150 1270 1387	(Y) 253:7 170:7 116:3 77:8 50:0 29:9 15:9 6:7 1:6 0 1:5 5:6 12:3 21:1 32:0 44:8 59:4 75:8 93:7 113:2	(T) 2018 1704 1434 1190 964 753 553 361 177 0 172 339 502 661 817 971 1121 1270 1416 1560	(v) 1961 1634 1453 1322 1243 1175 1119 1073 1034 1000 971 945 922 901 882 865 850 836 823 811

XVI. (continued).

XVI. (continued).

		$\gamma = 1.8$	3				$\gamma = 1.6$)	
φ	(x)	(Y)	(T)	(v)	φ	(x)	(Y)	(T)	(v)
11° 12 13 14 15 16 17 18 19 20	1500 1610 1718 1823 1926 2027 2127 2224 2320 2415	134.2 156.6 180.5 205.8 232.4 260.5 289.9 320.6 352.7 386.2	1703 1845 1986 2125 2263 2401 2539 2675 2812 2948	800 790 781 773 765 757 751 745 739 734	9° 8 7 6 5 4 3 2 1 0	2874 2200 1743 1384 1083 821 587 375 181 0	282.7 181.4 121.0 80.0 51.0 30.3 16.0 6.7 1.6 0	2084 1738 1453 1201 971 757 554 362 178 0	2262 1746 1511 1366 1265 1188 1127 1078 1036 1000
21 22 23 24 25	2508 2600 2691 2782 2871	421.1 457.4 495.1 534.3 575.0	3084 3221 3357 3494 3631	729 724 720 717 713	φ	(x)	$\gamma = 2 \cdot \alpha$) (т)	(v)
26 27 28 29 30	2959 3047 3134 3221 3307	617·1 660·9 706·2 753·2 801·9	3769 3907 4046 4186 4327	710 708 705 703 701	8° 7 6	2316 1799 1414	194 ^{.8} 126 ^{.5} 82 ^{.4}	1777 1474 1214	1896 1579 1404
31 32 33 34 35	3392 3478 3563 3647 3732	852·3 904·6 958·8 1015 1073	4469 4612 4756 4902 5049	700 698 697 697 696	5 4 3 2 1 0	1099 829 591 377 181 0	52.0 30.7 16.2 6.8 1.6 0	978 761 556 363 178 0	1288 1202 1136 1082 1038 1000
36 37 38 39 40	3816 3901 3985 4070 4154	1133 1196 1260 1328 1397	5198 5349 5502 5658 5815	696 695 695 696 696	I 2 3 4 5	169 327 477 619 755	1.5 5.6 12.1 20.8 31.5	172 338 500 658 812	968 939 914 892 872
41 42 43 44 45	4239 4324 4409 4494 4580	1470 1545 1623 1704 1788	5975 6137 6302 6471 6642	697 698 699 700 701	6 7 8 9 10	885 1010 1130 1246 1359	44°0 58°2 74°0 91°4 110°2	963 1112 1258 1402 1544	854 838 823 809 797

		$\gamma = 2^{\circ}$)				$\gamma = 2$	ſ	
φ	(x)	(Y)	(т)	(v)	φ	(x)	(Y)	(т)	(v)
11° 12 13 14 15 16 17 18 19 20	1468 1574 1678 1779 1878 1974 2069 2163 2254 2344	130 ^{.5} 152 ^{.1} 175 ^{.0} 199 ^{.3} 224 ^{.8} 251 ^{.7} 279 ^{.8} 309 ^{.2} 339 ^{.8} 371 ^{.8}	1684 1823 1961 2098 2233 2368 2502 2636 2770 2903	786 775 766 757 749 741 734 728 722 716	8° 7 6 5 4 3 2 1 0	2467 1864 1447 1117 838 596 379 181 0	212.5 132.8 85.1 53.2 31.2 16.3 6.8 1.6 0	1824 1498 1227 986 765 558 364 178 0	2116 1663 1447 1312 1217 1145 1087 1040 1000
2 I 22 23 24 25	2433 2521 2608 2693 2778	405°0 439°6 475°4 512°7 551°3	3036 3169 3302 3435 3569	711 707 702 699 695	φ	(x)	$\gamma = 2^{\cdot 2}$	2 (T)	(v)
26 27 28 29 30	2862 2945 3028 3110 3191	591·3 632·8 675·8 720·3 766·4	3703 3837 3973 4109 4246	692 689 687 684 682	8° 7 6	2680 1940 1483	238·4 140·3 88·0	1885 1525 1241	2495 1766 1496
31 32 33 34 35 36 27	3272 3353 3433 3513 3593 3673	814.1 863.5 914.7 967.7 1023 1079 1138	4384 4523 4663 4805 4948 5093	681 679 678 677 676 676 676	5 4 3 2 1 0 1	1135 848 600 380 182 0 168 225	54°4 31°7 16°5 6°8 1°6 0 1°5	993 769 560 364 178 0 171	1339 1233 1154 1092 1042 1000 965
37 38 39 40	3752 3832 3911 3991	1199 1263 1328	5240 5389 5539 5692	675 675 676	2 3 4 5	325 473 613 746	5.6 12.0 20.5 31.0	337 498 654 807	934 907 883 862
41 42 43 44 45	4071 4151 4231 4311 4391	1396 1467 1540 1617 1696	5847 6005 6165 6328 6494	676 677 678 679 680	6 7 8 9 10	873 994 1111 1224 1333	43°2 57°0 72°4 89°2 107°4	956 1103 1247 1389 1529	843 826 811 797 784

XVI. (continued).

37 TTT	/ / 7\	
XVI	continued	
XXXX.	(continued).	

		$\gamma = 2.2$	2				$\gamma = 2.3$	3	
φ	(x)	(Y)	(T)	(v)	φ	(x)	(Y)	(т)	(v)
11° 12 13 14 15	1438 1541 1640 1738 1833	127°0 147°9 170°0 193°3 217°9	1667 1803 1938 2072 2205	772 761 751 742 734	7° 6 5 4 3 2	2032 1524 1155 858 604 382	149 ^{.5} 91 ^{.3} 55 ^{.7} 32 ^{.2} 16 ^{.6} 6 ^{.9}	1555 1256 1001 773 562 365	1902 1552 1368 1249 1163 1097
16 17 18 19 20	1926 2017 2106 2194 2280	243.6 270.6 298.8 328.1 358.7	2337 2469 2600 2730 2861	726 719 712 706 700	I 0	182 0	$\gamma = 2^{2}$	178 0	1044 1000
21 22 23	2365 2449 2531	390°4 423°4 457°7	2991 3120 3251	695 690 686	φ	(x)	(Y)	(т)	(v)
23 24 25	2613 2694	493 ^{.2} 530 ^{.0}	3381 3511	682 679	7° 6	2146 1569	161·3 95·0	1591 1273	2093 1617
26 27 28 29 30	2774 2853 2931 3009 3087	568·1 607·6 648·5 690·8 734·7	3642 3773 3905 4038 4172	675 672 670 667 665	5 4 3 2 1 0	1176 868 609 383 182 0	57°1 32°7 16°8 6°9 1°6 0	1010 777 564 - 366 179 0	1102 1046 1000
31 32 33 34 35	3164 3240 3317 3393 3468	780.0 826.9 875.5 925.8 977.8	4306 4442 4579 4717 4856	663 662 660 659 658	I 2 3 4 5 6	168 324 469 607 737 861	1.5 5.5 11.9 20.3 30.5 42.4	171 336 496 651 802 950	962 929 900 875 853 833
36 37 38 39	3544 3619 3695 3770	1032 1088 1145 1205	4997 5140 5285 5431	658 657 657 657	7 8 9 10	979 1093 1202 1308	55.9 70.9 87.2 104.9	1095 1237 1376 1514 1650	815 799 785 771
40 41 42 43	3845 3921 3996 4072	1267 1332 1399 1468	5580 5731 5884 6040	657 658 658 659	11 12 13 14 15	1410 1509 1605 1699 1791	123.8 143.9 165.3 187.8 211.5	1784 1917 2048 2179	759 748 738 728 720
44 45	4148 4224	1540 1615	6199 6360	660 661	16 17 18 19 20	1880 1968 2053 2138 2220	236·3 262·2 289·2 317·4 346·7	2308 2437 2566 2693 2821	712 705 698 692 686

XVI. (continued).

		$\gamma = 2^{\cdot}$	ł			-	$\gamma = 2.6$	5	
ø	(x)	(Y)	(т)	(v)	φ	(x)	(Y)	(T)	(v)
21 [°] 22 23 24 25	2302 2382 2461 2539 2617	377 ^{•2} 408 ^{•8} 441 ^{•6} 475 ^{•5} 510 ^{•7}	2948 3075 3203 3330 3455	681 676 671 667 663	6° 5 4 3 2 1	1678 1223 889 618 387 183	104·3 60·2 33·8 17·1 7·0 1·6	1311 1028 786 569 367	1790 1474 1305 1193 1113
26 27 28 29 30	2693 2769 2844 2918 2992	547·2 584·9 624·0 664·4 706·2	3586 3714 3843 3973 4103	660 657 654 652 650	0 I 2 3 4 5	0 167 322 466 601 728	0 1.4 5.5 11.7 20.0 30.0	179 0 171 335 494 648 797	1050 1000 959 923 893 867 844
31 32 33 34 35 36	3065 3138 3211 3283 3355 3427	749'4 794'1 840'4 888'3 937'9 989'2	4235 4367 4500 4635 4771 4909	648 646 645 643 642 642	6 7 8 9 10	849 965 1076 1182 1284	41.7 54.8 69.4 85.3 102.4	943 1086 1226 1364 1500	823 805 788 773 760
37 38 39 40	3499 3571 3642 3714 3786	1042 1097 1154 1213	5048 5189 5332 5477	641 641 641 641	11 12 13 14 15	1383 1479 1572 1663 1751	120'8 140'3 160'9 182'7 20 5'5	1634 1766 1896 2025 2154	747 736 725 716 707
41 42 43 44 45	3780 3858 3929 4001 4074	1275 1338 1404 1472 1543	5624 5773 5925 6080 6237	641 642 643 644	16 17 18 19 20	1838 1922 2005 2086 2165	229 [.] 4 254 [.] 4 280 [.] 5 307 [.] 6 335 [.] 7	2281 2408 2533 2659 2784	699 692 685 678 672
		$\gamma = 2.5$	5		21 22 23	2243 2321 2397	365.0 395.4 426.8	2909 3033 3158 3283	667 662 658 653
φ	(x)	(Y)	(T)	(v)	24 25 26	2471 2546 2619	459 [.] 4 493 [.] 2 528 [.] 1	3408	650
7° 6	2300 1619	177 ^{.6} 99 [.] 3	1636 1291	2395 1695	20 27 28 29 30	2691 2691 2763 2834 2905	528 1 564.3 601.7 640.4 680.3	3533 3659 3785 3912 4039	646 643 640 638 635
5 4 3 2 1 0	1199 878 613 385 183 0	58.6 33.2 17.0 7.0 1.6 0	1019 782 566 367 179 0	1435 1285 1183 1107 1048 1000	31 32 33 34 35	2975 3045 3115 3184 3253	721.7 764.5 808.7 854.5 901.8	4168 4297 4428 4560 4693	633 632 630 629 628

	$\gamma = 2.6$						$\gamma = 2.8$	}	
ø	(x)	(Y)	(T)	(v)	φ	(x)	(Y)	(T)	(v)
36° 37 38 39 40	3321 3390 3458 3527 3595	950 ^{.8} 1002 1054 1108 1165	4827 4963 5101 5241 5382	627 626 626 626 626 626	6° 7 8 9 10	839 951 1059 1163 1262	41.0 53.8 68.0 83.5 100.1	937 1078 1217 1353 1486	814 795 778 762 749
41 42 43 44 45	3663 3732 3800 3868 3938	1223 1284 1346 1412 1479	5526 5672 5820 5971 6124	626 626 627 628 629	11 12 13 14 15	1358 1451 1542 1629 1715	118.0 136.9 156.9 177.9 200.0	1618 1748 1877 2004 2130	736 724 714 704 695
$\gamma = 2.7$				16 17 18 19 20	1798 1879 1959 2037 2114	223.1 247.2 272.3 298.5 325.6	2255 2379 2503 2626 2749	687 679 672 666 660	
φ 6° 5 4 3 2	(X) 1747 1250 901 623 389	(Y) 110 ^{.2} 62 ^{.0} 34 ^{.4} 17 ^{.3} 7 ^{.0}	(T) 1334 1039 791 571 368	(V) 1912 1517 1325 1204 1118	21 22 23 24 25 26	2189 2264 2337 2409 2480 2550	353.8 383.0 413.3 444.7 477.1 510.7	2871 2994 3116 3238 3361 3484	655 650 645 641 637 633
I 0	184 0	$\gamma = 2.8$	179 Q	1052 1000	27 28 29 30	2620 2689 2757 2825	545'4 581'3 618'5 656'8	3607 3731 3855 3980	630 627 625 622
φ	(x)	(Y)	(T)	(v)	31 32 33 34 35	2893 2960 3026 3092 3158	696·5 737·6 780·0 823·8 869·2	4106 4233 4360 4489 4620	620 618 617 616 614
6° 5 4 3 2 1	1831 1279 913 628 390 184 0	117.6 64.0 35.0 17.5 7.1 1.6 0	1360 1049 796 573 369 179 0	2075 1566 1348 1215 1123 1055 1000	36 37 38 39 40	3224 3290 3355 3421 3486	916 [.] 1 964 [.] 7 1015 1067 1121	4751 4884 5019 5156 5294	614 613 612 612 612 612
I 2 3 4 5	167 320 462 595 720	1.4 5.4 11.6 19.7 29.6	171 334 492 644 793	956 918 887 859 835	41 42 43 44 45	3552 3617 3683 3748 3814	1177 1235 1295 1357 1422	5435 5577 5722 5870 6020	612 612 613 614 614

	$\gamma = 2.9$					$\gamma = 3.0$				
\$	(x)	(Y)	(т)	(v)	φ	(x)	(Y)	(т)	(v)	
6° 5 4 3 2 1 0	1939 1311 926 633 392 184 0	127·3 66·2 35·7 17·7 7·1 1·6 0	1 392 1061 802 575 370 179 0	2312 1622 1371 1227 1129 1057 1000	21° 22 23 24 25 26 27	2139 2210 2281 2351 2419 2487 2554	343 ^{.5} 37 ^{1.7} 400 ^{.9} 43 ^{1.1} 46 ^{2.4} 494 ^{.7} 5 ^{28.1}	2836 2956 3076 3197 3317 3437 3558	643 638 633 629 625 622 618	
$\gamma = 3.0$					28 29 30	2620 2686 2751	562 ^{.7} 59 ^{8.4} 635 [.] 3	3679 3801 3924	615 613 610	
φ	(x)	(Y)	(т)	(v)	31 32 33	2816 2881 2944	673 ^{.5} 712 ^{.9} 753 ^{.7}	4047 4172 4297	608 606 605	
5°4 32 10 12 34 5 6 7	1346 939 639 394 185 0 166 318 458 589 712 828 938	68.6 36.4 17.9 7.2 1.6 0 1.4 5.4 11.5 19.5 29.1 40.3 52.9	1074 807 578 371 180 0 170 333 490 641 788 931 1071	1687 1397 1239 1135 1050 953 914 880 852 827 805 785	33 34 35 36 37 38 39 40 41 42 43 44 45	3008 3072 3135 3198 3261 3323 3386 3449 3512 3575 3637 3700	735'8 839'4 884'5 931'1 979'4 1029 1081 1135 1190 1248 1307 1369	4423 44551 4680 4811 4943 5076 5212 5350 5489 5631 5776 5923	603 602 601 601 600 600 600 600 600 600 601 602	
7 8 9 10	1044 1144 1241	66·7 81·8 98·0	1207 1342 1473	768 752 738	$\gamma = 3.1$					
11 12 13 14 15	1335 1425 1513 1598 1680	115·3 133·7 153·1 173·5 194·9	1603 1731 1858 1983 2107	725 714 703 693 684	φ	(x)	(y)	(т)	(v)	
16 17 18 19 20	1761 1840 1917 1992 2066	217·2 240·5 264·8 290·1 316·3	2230 2353 2474 2595 2716	676 668 661 654 648	5° 4 3 2 1 0	1386 954 644 396 185 0	71.4 37.2 18.1 7.2 1.7 0	1088 813 580 372 180 0	1764 1424 1252 1141 1061 1000	

XVI. (continued).

XVI. (continued).

	$\gamma = 3.5$					$\gamma = 3.2$				
φ	(x)	(Y)	(т)	(v)	ϕ (X) (Y) (T) (Y					
5° 4 3 2 1 0 1 2 3 4	1431 969 650 398 185 0 166 316 455 584	74.7 38.0 18.4 7.3 1.7 0. 1.4 5.4 11.4 19.2	1103 819 582 372 180 0 170 332 488 638	1857 1454 1265 1146 1063 1000 950 909 874 845	36° 37 38 39 40 41 42 43 44	3052 3113 3173 3234 3294 3354 3415 3475 3536	855.5 900.4 946.8 994.9 1045 1096 1150 1205 1262	4614 4742 4871 5002 5135 5270 5407 5546 5688	590 589 588 588 588 588 588 588 588 588 588	
5 6 7 8 9	704 818 926 1029 1127	28·7 39·7 52·0 65·5 80·2	784 925 1063 1198 1331	819 796 777 759 743	$\frac{45 3596 1322 5832 59}{\gamma = 3.3}$					
10 11	1221	96°0	1461	745	φ	(x)	(Y)	(т)	(v)	
12 13 14 15	1400 1485 1568 1648	130.7 149.5 169.3 190.0	1715 1840 1964 2086	703 693 683 673	5° 4 3 2	1484 985 656 400	78.5 38.9 18.6 7.3	1120 825 585 373	1973 1489 1278 1153	
16 17 18 19	1726 1802 1877 1950	211.7 234.3 257.8 282.2	2207 2327 2447 2566	665 657 650 644	I O	186 0	7 3 1.7 0	575 180 0	1066 1000	
20 21	2021	307.6 333.9	2685 2803	638 632			$\gamma = 3.2$	ŀ		
22 23 24 25	2161 2229 2296 2362	361·2 389·4 418·5 44 ^{8·7}	2921 3039 3157 3275	627 622 618 614	φ	(x)	(Y)	(T)	(v)	
26 27 28 29 30	2428 2492 2556 2620 2683	479 ^{.9} 512 ^{.2} 545 ^{.5} 580 ^{.0} 615 ^{.5}	3394 3512 3631 3751 3872	611 607 604 602 599	5° 4 3 2 1	1547 1002 662 402 186 0	83·2 39·8 18·8 7·4 1·7 0	1139 831 588 374 180 0	2126 1522 1293 1159 1068 1000	
31 32 33 34 35	2745 2807 2869 2930 2991	652·3 690·3 729·6 770·2 812·1	3993 4115 4238 4362 4487	597 595 593 592 591	I 2 3 4 5	165 314 451 578 697	1.4 5.3 11.3 19.0 28.3	170 331 486 635 779	947 904 868 838 811	

e

XVI. (continued).

		$\gamma = 3^{\cdot 2}$	1				$\gamma = 3$	5	
ø	(x)	(v)	(т)	(v)	φ	(x)	(Y)	(T)	(v)
6° 7 8 9 10	808 914 1014 1110 1202	39°1 51°1 64°3 78°6 94°0	919 1056 1190 1321 1449	788 768 750 734 719	4° 3 2 1 0	1021 668 404 187 0	40 ^{.8} 19 ^{.1} 7 [.] 4 1 ^{.7} 0	838 590 375 180 0	1562 1308 1165 1070 1000
11 12 13 14	1291 1376 1459	110'4 127'8 146'1 165'4	1575 1700 1823 1945	706 694 683 673			$\gamma = 3.0$	5	
15	1539 1617	185.5	2065	664	φ	(x)	(Y)	(т)	(v)
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	1693 1767 1839 1910 1979 2047 2114 2180 2245 2309 2373 2435 2497 2558 2619 2679 2739 2799	206 ⁶ 6 228 [•] 5 251 [•] 3 275 [•] 0 299 [•] 5 325 [•] 0 351 [•] 4 378 [•] 7 406 [•] 9 436 [•] 1 466 [•] 3 497 [•] 4 529 [•] 6 56 ² 9 597 [•] 3 632 [•] 8 669 [•] 5 707 [•] 4	2185 2303 2421 2538 2655 2771 2887 3004 3120 3236 3352 3469 3356 3704 3822 3469 3356 3704 3822 3941 4061 4182	655 647 640 628 622 617 612 608 604 600 597 594 591 589 583	4° 32 100 12 34 5 6 7 8 9 10	1041 675 406 187 0 165 313 448 573 689 799 902 1001 1094 1184 1271 1354	41'9 19'3 7'5 1'7 0 1'4 5'3 11'2 18'8 27'9 38'5 50'3 63'2 77'2 92'2 10S'2 125'1	846 593 376 181 0 170 330 484 632 775 914 1049 1181 1311 1311 1311 1315 1562 1685	1605 1323 1172 1072 1072 944 899 862 831 804 780 760 741 725 710 697 685
33 34 35	2858 2917	746 ^{.5} 787 ^{.0}	4304 4427	5°3 582 580	12 13 14 15	1354 1434 1512 1588	125°1 143°0 161°7 181°3	1035 1807 1927 2045	674 664 654
36 37 38 39 40	2975 3034 3092 3150 3209	828·9 872·1 916·9 963·2 1011	4551 4677 4804 4933 5063	579 579 578 578 578 577	16 17 18 19 20	1662 1734 1804 1872 1940	201.7 223.0 245.2 268.1 292.0	2163 2280 2396 2512 2627	646 638 631 624 618
41 42 43 44 45	3267 3325 3383 3441 3500	1061 1112 1166 1221 1278	5196 5330 5467 5606 5748	577 577 578 578 578 579	21 22 23 24 25	2006 2071 2135 2198 2260	316·7 342·2 368·7 396·0 424·3	2741 2856 2970 3084 3198	612 607 603 598 594

		$\gamma = 3.0$	5				$\gamma = 3.8$	3	
φ	(x)	(¥)	(T)	(v)	φ	(x)	(Y)	(T)	(v)
26° 27 28 29 30	2321 2381 2441 2501 2559	453 ^{.5} 4 ⁸ 3 ^{.7} 5 ^{14.9} 547 ^{.1} 5 ^{80.3}	3313 3428 3543 3659 3775	591 587 584 582 579	1° 2 3 4 5	164 311 445 568 682	1'4 5'2 11'1 18'6 27'6	169 329 482 629 771	941 895 856 824 797
31 32 33 34 35	2618 2675 2733 2790 2847	614.7 650.1 686.8 724.7 763.8	3892 4010 4129 4249 4370	577 575 573 572 571	6 7 8 9 10	790 891 987 1079 1167	37'9 49'5 62'1 75'8 90'5	909 1042 1173 1301 1426	773 752 733 717 702
36 37 38 39 40	2904 2960 3017 3073 3129	804·2 846·0 889·3 934·0 980·3	4492 4616 4741 4867 4995	569 569 568 568 568 567	11 12 13 14 15	1251 1332 1411 1487 1560	106°1 122°6 140°0 158°2 177°3	1550 1671 1791 1910 2027	688 676 665 655 645
41 42 43 44 45	3185 3241 3298 3354 3410	1028 1078 1129 1183 1238	5126 5258 5392 5529 5668	567 567 568 568 568	16 17 18 19 20	1632 1702 1770 1837 1902	197 ^{.2} 217 ^{.9} 239 ^{.4} 261 ^{.7} 284 ^{.9} 308 ^{.9}	2143 2258 2372 2486 2600	637 629 622 615 609 604
	1	$\gamma = 3$	7		21 22 23 24 25	1967 2030 2092 2153 2213	333.7 359.4 385.9 413.3	2713 2825 2938 3050 3163	598 594 589 585
φ	(x)	(Y)	(T)	(v)	26 27 28	2272 2331	441°7 470°9	3276 3389	582 578
4° 3	1063 682	43°1 19°6	854 596	1654 1340	28 29 30	2389 2447 2503	501.2 532.4 564.6	3502 3616 3731	575 573 570
2 I O	408 187 0	7.5 1.7 0	377 181 0	1178 1075 1000	-31 32 33 34	2560 2616 2672 2727 2782	597.9 632.2 667.7 704.4	3846 3962 4079 4197 4316	568 566 564 563 561
$\gamma = 3.8$				35 36 37	2837 2892	742°2 781°4 821°9	4436 4558	560 559	
φ	(x)	(Y)	(T)	(v)	37 38 39 40	2946 3001 3055	863.7 907.0 951.8	4681 4805 4932	559 558 558
4° 3 2 1 0	1086 689 410 188 0	44°4 19°8 7°6 1°7 0	862 599 378 181 0	1710 1357 1185 1077 1000	41 42 43 44 45	3109 3164 3218 3272 3327	998·2 1046 1096 1148 1201	5060 5190 5322 5456 5593	558 558 558 558 558 559

		$\gamma = 3.6$)				$\gamma = 4$	C	
φ	(x)	(Y)	(т)	(v)	φ	(x)	(Y)	(т)	(v)
4° 3 2 1 0	1113 696 412 188 0	45 ^{.9} 20 ^{.1} 7 ^{.6} 1 ^{.7} 0	871 602 379 181 0	1774 1375 1192 1079 1000	26° 27 28 29 30	2226 2283 2340 2396 2451	430 ^{.6} 459 ^{.0} 488 [.] 3 518 ^{.6} 549 ^{.9}	3241 3352 3464 3576 3689	573 570 567 564 562
γ=4°0					31 32 33	2506 2560 2614 2668	582·2 615·5 649·9 685·5	3802 3917 4032 4148	559 557 556 554
φ	(x)	(Y)	(т)	(v)	34 35	2721	722.2	4265	553
4° 3 2 1	1142 704 414 188	47.6 20.4 7.7 1.7	881 605 380 181	1848 1394 1199 1082	36 37 38 39 40	2774 2827 2880 2933 2986	760°1 799°4 839°9 881°9 925°3	4384 4503 4624 4747 4871	552 551 550 550 549
0 1 2 3	0 164 309 442	0 1.4 5.2 10.9	0 169 329 481	1000 939 890 851	41 42 43 44 45	3038 3091 3144 3196 3249	970°2 1017 1065 1115 1167	4997 5125 5255 5387 5522	549 549 549 550 550
3 4 5	563 676	18.4 27.2	626 767	818 790			$\gamma = 4^{\cdot 2}$	2	
6 7 8 9	781 881 975 1064	37'4 48'7 61'1 74'5 88'8	903 1036 1165 1292	766 744 725 709	φ	(x)	(Y)	(т)	(v)
10 11 12 13 14 15	1150 1233 1312 1388 1462 1534	104.1 120.2 137.2 154.9 173.5	1416 1538 1658 1776 1893 2009	694 680 668 657 646 637	4° 3 2 1 0	1212 720 419 189 0	51.7 21.1 7.8 1.7 0	903 611 382 182 0	2047 1436 1214 1087 1000
16 17	1604 1672	192.9 213.0	2123 2237	629 621	$\gamma = 4.4$				
18 19 20	1739 1804 1867	234.0 255.7 278.2	2350 2462 2574	613 607 601	ø	(x)	(Y)	(т)	(v)
21 22 23 24 25	1930 1991 2051 2110 2169	301.6 325.7 350.7 376.4 403.1	2685 2796 2907 3018 3129	595 590 585 581 577	3° 2 I 0	738 423 190 0	21·8 7·9 1·7 0	618 384 182 0	1484 1230 1091 1000

.

XVI. (continued).

	7	$\gamma = 4.4$				2	y = 4.6	,	
φ	(x)	(Y)	(T)	(v)	φ	(x)	(Y)	(т)	(v)
1° 2 3 4 5	163 306 435 554 663	1.4 5.1 10.8 18.0 26.5	169 327 477 621 759	933 882 840 806 777	3° 2 I 0	758 428 191 0	22°6 8°0 1°7 0	626 386 183 0	1538 1246 1096 1000
6 7 8	765 860 951	36·3 47·2 59·2	893 1024 1150	752 730 711			$\gamma = 4.8$	3	
9 10	1037 1119	72.0 85.7	1274 1396	694 679	φ	(x)	(Y)	(т)	(v)
11 12 13 14 15	1198 1273 1346 1417 1485	100°3 115°7 131°9 148°8 166°5	1515 1632 1748 1862 1975	665 652 641 631 622	3° 2 1 0	780 433 192 0	23.5 8.1 1.7 0	634 388 183 0	1601 1263 1103 1000
16 17 18 19 20	1552 1617 1680 1741 1802	185.0 204.1 224.0 244.7 266.1	2087 2197 2307 2417 2526	613 605 598 591 585	1 2 3 4 5	162 303 429 545 650	1.4 5.1 10.6 17.6 25.9	168 325 474 616 752	928 874 830 795 765
21 22 23 24 25	1861 1919 1976 2032 2088	288·2 311·1 334·7 359·1 384·3	2634 2742 2850 2958 3066	580 574 570 565 561	6 7 8 9 10	749 841 929 1011 1090	35 [.] 4 45 [.] 9 57 [.] 4 69 [.] 7 82 [.] 9	884 1012 1136 1258 1377	739 717 697 680 665
26 27 28 29 30	2142 2196 2250 2302 2355	410 [.] 4 437 [.] 3 465 [.] 0 493 [.] 6 523 [.] 2	3175 3283 3392 3501 3611	558 554 551 548 546	11 12 13 14 15	1166 1238 1308 1376 1441	96°9 111°7 127°2 143°4 160°3	1493 1608 1721 1833 1943	651 638 627 617 608
31 32 33 34 35	2406 2458 2509 2559 2610	553.7 585.2 617.7 651.3 685.9	3721 3832 3944 4057 4171	544 542 540 538 537	16 17 18 19 20	1504 1566 1626 1685 1743	177'9 196'2 215'1 234'8 255'2	2052 2161 2268 2375 2481	599 591 584 577 571
36 37 38 39 40	2660 2710 2760 2810 2859	721.7 758.7 797.0 836.6 877.5	4286 4402 4519 4638 4759	536 535 534 534 533	21 22 23 24 25	1799 1854 1909 1962 2015	276·2 298·0 320·5 343·7 367·7	2587 2693 2798 2903 3009	565 560 555 551 547
41 42 43 44 45	2909 2958 3008 3058 3107	919:9 963:7 1009 1056 1105	4881 5006 5132 5260 5391	533 533 533 533 533 534	26 27 28 29 30	2067 2118 2169 2219 2268	392 ^{.5} 418 ^{.0} 444 ^{.4} 471 ^{.6} 499 ^{.6}	3114 3220 3326 3432 3539	544 540 537 534 532

18

273

В.

XVI. (continued).

		$\gamma = 4.8$	3				$\gamma = 5^{-2}$	2	
φ	(x)	(Y)	(т)	(v)	φ	(x)	(Y)	(т)	(v)
31° 32 33 34 35	2317 2366 2414 2463 2510	528.6 558.4 589.3 621.1 654.0	3647 3755 3864 3974 4085	530 528 526 524 523	6° 7 8 9 10	734 824 908 988 1064	34°5 44°7 55°7 67°7 80°4	875 1001 1123 1242 1359	727 705 685 667 652
36 37 38 39 40	2558 2605 2653 2700 2747	687.9 723.0 759.3 796.8 835.5	4196 4310 4424 4540 4657	522 521 520 519 519	11 12 13 14 15	1136 1206 1273 1338 1400	93.8 108.0 122.8 138.4 154.6	1473 1586 1697 1806 1914	638 626 614 604 595
41 42 43 44 45	2794 2841 2888 2935 2982	875.7 917.2 960.2 1005 1051	4776 4897 5020 5145 5272	519 519 519 519 519 519	16 17 18 19 20	1461 1520 1578 1634 1689	171.4 188.9 207.1 225.9 245.4	2021 2127 2232 2336 2440	586 578 571 564 558
	(x)	$\gamma = 5^{\circ}$		(11)	21 22 23 24 25	1743 1796 1847 1898 1949	265.5 286.3 307.8 329.9 352.8	2544 2647 2750 2853 2956	553 548 543 538 534
φ 3° 2 1 0	804 438 193 0	(Y) 24.6 8.3 1.7 0	(T) 643 390 183 0	(v) 1676 1282 1107 1000	26 27 28 29 30	1998 2047 2095 2143 2190	376.4 400.8 425.9 451.8 478.6	3059 3162 3265 3369 3473	531 528 524 522 519
	,	$\gamma = 5.2$	2	1	31 32 33 34 35	2237 2284 2330 2375 2421	506·1 534·6 564·0 594·3 625·6	3578 3684 3790 3897 4006	517 515 513 512 510
φ	(x)	(Y)	(T)	(v)	36 37 38	2466 2511 2556	657.9 691.3 725.8	4115 4225 4337	509 508 507
3.5 3.0 2.5	1239 833 609	49°1 25°8 15°0	839 652 513	2824 1768 1466	39 40	2601 2646	761 ° 4 798°3	4450 4564	507 506
2°0 1°0 0 1 2 3 4 5	444 193 0 161 300 424 536 639	8.4 1.8 0 1.4 5.0 10.4 17.2 25.3	393 184 0 168 323 471 611 745	1301 1112 1000 923 866 820 784 753	41 42 43 44 45	2691 2735 2780 2825 2869	836·5 876·0 916·8 959·2 1003	4681 4798 4918 5040 5164	506 506 506 506 506

XVI. (continued).

		$\gamma = 5.4$	ŀ				$\gamma = 5.6$	5	
ø	(x)	(Y)	(T)	(v)	φ	(x)	(Y)	(T)	(v)
3.0 2.5 2.0 1.0 0	866 623 450 194 0	27·2 15·4 8·6 1·8 0	664 518 395 184 0	1884 1508 1322 1117 1000	26° 27 28 29 30	1936 1982 2029 2074 2119	362.0 385.3 409.3 434.1 459.6	3007 3108 3209 3311 3413	519 516 513 510 508
		$\gamma = 5.6$	5		31 32 33 34 35	2164 2209 2253 2296 2340	486.0 513.2 541.2 570.2 600.1	3515 3619 3722 3827 3933	505 503 502 500 499
φ	(x)	(Y)	(T)	(v)	36 37 38.	2383 2426	630.9 662.8 695.8	4040 4148	497 496 496
3.0 2.5	907 637	29:0 15:9 8:7	677 523 398	2037 1556 1344	30. 39 40	2469 2512 2555	729.8 765 0	4257 4367 4479	490 495 494
2'0 1'0 0	456 195 0	1.8 0	184 0	1344 1123 1000	41 42 43	2597 2640 2682	801.4 839.1 878.1	4592 4708 4825 -	494 494 494
I 2 3	160 297 418	1.4 4.9 10.2	167 322 467	918 858 811	44 45	2725 2768	918·6 960·5	4943 5064	494 494
3 4 5	528 628	16·9 24·7	606 738	774 742			$\gamma = 5.8$	3	
6 7 8	721 807 889	33 ^{.7} 43 ^{.5} 54 ^{.2}	866 990 1110	716 693 673	ø	(x)	(¥)	(т)	(v)
9 10 11	966 1039 1109	65.7 78.0 90.9	1227 1342 1454	656 640 626	3.0 2.5	958 653	31.3	692 529	2258 1611
12 13 14	1176 1240 1303	104 ^{.6} 118 ^{.9} 133 ^{.8}	1565 1673 1781	614 602 592	2°0 1°0 0	462 196 0	8·9 1·8 0	400 185 0	1367 1128 1000
15 16	1363	149 [.] 4	1886 1991	583 574	-		$\gamma = 6^{\circ}$)	
17 18 19 20	1421 1478 1533 1587 1640	105 5 182·3 199·8 217·8 236·5	2095 2198 2300 2402	566 559 553 547	φ	(x)	(Y)	(T)	(v)
21 22 23 24 25	1691 1742 1792 1840 1888	255.7 275.7 296.2 317.5 339.4	2503 2604 2705 2806 2906	541 536 531 527 523	3.0 2.5 2.0 1.0 0	1029 670 469 197 0	34°5 17°0 9°1 1°8 0	711 535 403 185 0	2621 1675 1392 1134 1000

18-2

XVI. (continued).

		$\gamma = 6.0$)				$\gamma = 6^{\circ}2$	2	
ø	(x)	(Y)	(т)	(v)	φ	(x)	(Y)	(т)	(v)
1° 2 3 4 5	159 294 413 520 618	1·3 4·9 10·0 16·6 24·2	167 320 464 601 732	913 850 802 764 732	° 2°5 2°0 1°0 0	689 476 198 0	17.7 9.3 1.8 0	542 406 186 0	1749 1420 1140 1000
6 7 8	708 792 870	32·9 42·4 52·8	858 980 1098	705 682 662			γ=6·2	F	
9 10	945 1016	63·9 75·8	1213 1326	645 629	φ	(x)	(Y)	(т)	(v)
11 12 13 14 15	1083 1148 1210 1270 1328	88·3 101·4 115·2 129·6 144·6	1437 1545 1652 1757 1861	615 603 591 581 572	° 2°5 2°0 1°0 0	712 483 199 0	18.5 9.5 1.8 0	550 409 186 0	1839 1449 1146 1000
16 17 18 19 20	1 384 1439 1492 1544 1594	160°2 176°3 193°1 210°4 228°4	1963 2065 2166 2267 2366	563 555 548 542 536	I 2 3 4 5	158 292 408 513 608	1.3 4.8 9.9 16.3 23.7	166 319 462 597 726	908 843 794 755 722
21 22 23 24 25	1644 1692 1740 1787 1833	246.9 266.0 285.8 306.1 327.2	2466 2565 2663 2762 2860	530 525 520 516 512	6 7 8 9 10	695 777 853 925 994	32°1 41°4 51°5 62°3 73°7	850 970 1087 1200 1311	695 672 652 634 619
26 27 28 29 30	1879 1923 1968 2011 2055	348.8 371.2 394.2 418.0 442.5	2959 3058 3157 3257 3357	509 505 502 499 497	11 12 13 14 15	1059 1122 1182 1240 1296	85.8 98.5 111.8 125.7 140.2	1420 1526 1631 1734 1836	605 592 581 571 562
31 32 33 34 35	2098 2140 2182 2224 2266	467.8 493.8 520.7 548.5 577.1	3457 3558 3660 3762 3866	495 493 491 489 488	16 17 18 19 20	1 350 1402 1454 1504 1 552	155°2 170°8 186°9 203°7 220°9	1937 2037 2136 2235 2333	553 545 53 ⁸ 53 ² 526
36 37 38 39 40	2307 2349 2390 2431 2472	606°7 637°2 668°7 701°3 735°0	3970 4076 4183 4291 4400	487 486 485 484 484	21 22 23 24 25	1600 1647 1693 1738 1782	238.8 257.2 276.2 295.8 316.0	2430 2527 2624 2721 2818	520 515 511 506 502
41 42 43 44 45	2512 2553 2594 2635 2676	769 ·9 806 ·0 843 ·3 882 ·0 922 ·1	4511 4624 473 ⁸ 4854 4973	484 483 483 483 483 484	26 27 28 29 30	1826 1869 1912 1954 1995	336°9 358°4 380°5 403°4 426°9	2914 3011 3108 3206 3304	499 495 492 490 487

XVI. (continued).

		$\gamma = 6.4$	ŀ				$\gamma = 6.8$	3	
φ	(x)	(Y)	(T)	(v)	ø	(x)	(Y)	(т)	(v)
31° 32 33 34 35	2036 2077 2118 2158 2198	451.2 476.2 502.1 528.7 556.2	3402 3501 3601 3702 3803	485 483 481 480 478	6° 7 8 9 10	684 763 837 907 973	31.5 40.5 50.2 60.7 71.8	843 961 1076 1188 1297	686 663 642 625 609
36 37 38 39 40	2238 2278 2317 2356 2396	584.6 613.9 644.2 675.5 707.9	3905 4009 4114 4219 4327	477 476 475 475 475 474	11 12 13 14 15	1037 1097 1155 1211 1265	83.5 95.8 108.7 122.1 136.1	1404 1508 1612 1713 1814	595 583 572 561 552
41 42 43 44 45	2435 2474 2513 2552 2591	741°3 776°0 811°8 848°9 887°4	4435 4546 4658 4772 4888	474 473 473 474 474	16 17 18 19 20	1318 1368 1418 1466 1513	150.6 165.7 181.3 197.4 214.1	1913 2011 2108 2205 2301	544 536 529 522 516
	1	$\gamma = 6.6$	5	1	21 22 23 24	1559 1604 1649 1692	231·3 249·0 267·4 286·3	2397 2492 2587 2682	511 506 501 497
φ	(x)	(Y)	(T)	(v)	25	1735	305.8	2777	493
° 2°5 2°0 1°0 0	737 491 200 0	19:4 9:7 1:8 0	55 ^{.8} 41 ^{.2} 18 ^{.7} 0	1951 1481 1152 1000	26 27 28 29 30	1777 1819 1860 1900 1940	325.9 346.6 367.9 389.9 412.6 436.0	2872 2968 3063 3159 3255 3351	490 486 483 481 478 476
		$\gamma = 6.8$	3		31 32 33	2019 2058	460°1 485°0	3449 3546	474 472
φ	(x)	(Y)	(T)	(v)	34 35	2097 2136	510.7	3645 3745	471 469
° 2`5 2`0 1`0 0	201 0	20.6 9.9 1.8 0	567 415 187 0	2097 1516 1158 1000	36 37 38 39 40	2174 2212 2250 2288 2326	564.5 592.7 621.8 652.0 683.1	3845 3947 4049 4153 4258	468 467 466 465 465
1 2 3 4 5	157 289 403 505 598	1·3 4·7 9·7 16·0 23·2	166 317 459 592 720	904 836 786 746 713	41 42 43 44 45	2363 2401 2439 2476 2514	715.3 748.6 783.1 818.8 855.8	4365 4473 4583 4695 4809	465 464 464 464 465

XVI. (continued).

		$\gamma = 7 \cdot c$)				$\gamma = 7^{\circ}$	2	
¢	(x)	(Y)	(T)	(v)	φ	(x)	(Y)	(т)	(v)
° 2°5 2°0 1°0 0	806 509 202 0	22°0 10°2 1°9 0	578 418 188 0	2299 1555 1165 1000	31° 32 33 34 35	1928 1966 2003 2041 2078	422'1 445'4 469'4 494'1 519'7	3304 3399 3495 3592 3690	468 466 464 462 461
		$\gamma = 7.2$	2		36 37 38	2115 2152 2188	546°0 573°2 601°4	3788 3888 3989	460 459 458
φ	(x)	(Y)	(т)	(v)	39 40	2225 2261	630'4 660'4	4091 4194	457 457
° 2°5 2°0 1°0 0 1	856 519 203 0 156	23 ^{.9} 10 ^{.4} 1 ^{.9} 0 1 ^{.3}	592 422 188 0 165	2611 1598 1171 1000 899	41 42 43 44 45	2298 2334 2370 2406 2443	691.5 723.6 756.8 791.3 826.9	4299 4405 4513 4623 4735	456 456 456 456 456
2 3 4	286 399 499	4.7 9.6 15.7 22.8	316 456 588	830 778 737			$\gamma = 7^{\cdot 2}$	ŧ	
5	589 672	30.8	714 835	704 677	φ	(x)	(Y)	(T)	(v)
7 8 9 10	750 822 890 954	39 ^{.6} 49 [.] 1 59 ^{.2} 70 ^{.0}	952 1065 1176 1283	653 633 616 600	° 2°5 2°0 I°0	931 530 204	26.9 10.7 1.9	610 426 188	3217 1647 1178
11 12 13 14	1016 1074 1131 1185	81.4 93.3 105.8 118.8	1388 1492 1593 1693	586 574 563 552	0	0	$\gamma = 7.6$	0 5	1000
15 16 17	1237 1288 1337	132·3 146·4 161·0	1792 1889 1986	543 535 5 ² 7	φ	(x)	(Y)	(т)	(v)
17 18 19 20	1385 1431 1477	176°0 191°6 207°7	2082 2177 2272	520 514 508	° 2°0 1°0 0	542 205 0	11.1 1.0 0	430 189 0	1701 1185 1000
21 22 23 24 25	1521 1565 1608 1650 1691	224.4 241.6 259.3 277.5 296.4	2366 2459 2553 2646 2740	502 497 493 489 485	I 2 3 4 5	156 284 394 492 581	1·3 4·6 9·4 15·4 22·4	165 314 453 584 709	895 823 770 729 696
26 27 28 29 30	1732 1772 1811 1851 1889	315.8 335.8 356.4 377.6 399.5	2833 2926 3020 3114 3209	481 478 475 472 470	6 7 8 9 10	662 737 807 873 936	30 ^{.2} 38 ^{.7} 48 ^{.0} 57 ^{.9} 68 [.] 3	828 944 1056 1164 1270	668 645 625 607 591

XVI. (continued).

		$\gamma = 7.0$	5				$\gamma = 8.0$	C	
φ	(x)	(Y)	(T)	(v)	φ	(x)	(Y)	(T)	(v)
11° 12 13 14 15	996 1053 1107 1160 1211	79'4 91'0 103'1 115'7 128'8	1374 1476 1576 1674 1771	578 565 554 544 535	° 2°0 1°0 0 1 2	569 207 0 155 281	11.8 1.9 0 1.3 4.6	439 190 0 164 313	1837 1199 1000 889 817
16 17 18 19 20	1260 1307 1354 1399 1443	142.4 156.6 171.2 186.3 201.9	1867 1963 2057 2151 2244	526 519 512 506 500	3 4 5 6 7 8	390 486 572 652 725 794	9.3 15.2 22.0 29.6 37.9 46.9	451 580 704 822 936	763 722 688 660 637
21 22 23 24 25	1486 1528 1570 1610 1650	218.0 234.6 251.7 269.4 287.6	2336 2428 2520 2612 2704	494 489 485 481 477	9 10 11 12 13	919 977 1032 1085	40 9 56.6 66.8 77.5 88.8 100.5	1046 1153 1258 1360 1460 1559	617 599 583 570 557 546
26 27 28 29 30	1690 1728 1767 1805 1842	306.4 325.7 345.7 366.2 387.4	2796 2888 2980 3072 3165	473 470 467 464 462	14 15 16 17 18	1136 1186 1233 1280 1325	112·8 125·5 138·7 152·4 166·6	1656 1752 1846 1940 2033	536 527 519 511 504
31 32 33 34 35	1879 1916 1952 1988 2024	409 ^{.2} 431 ^{.7} 454 ^{.9} 478 ^{.9} 503 ^{.5}	3259 3353 3447 3542 3638	460 458 456 454 453	19 20 21 22 23 24	1368 1411 1453 1494 1534 1573	181.3 196.4 212.0 228.1 244.8 261.9	2125 2217 2308 2399 2489 2580	498 492 487 482 477 473
36 37 38 39 40	2060 2096 2131 2166 2201	529.0 555.3 582.5 610.5 639.5	3735 3 ⁸ 33 3932 4033 4134	452 451 450 449 449	25 26 27 28 29 30	1612 1650 1688 1725 1762 1798	279 [.] 5 297 [.] 7 316 [.] 5 335 ^{.8} 355 ^{.7} 376 ^{.2}	2670 2761 2851 2942 3033 3124	469 466 463 460 457 455
41 42 43 44 45	2236 2272 2307 2342 2377	669*5 700*6 732*7 765*9 800*4	4237 4342 4448 4555 4665	448 448 448 448 448 448	31 32 33 34 35	1834 1869 1905 1940 1974	397.3 419.1 441.6 464.7 488.6	3124 3216 3308 3402 3495 3590	455 450 449 447 446
		$\gamma = 7.8$	3	-	36 37 38 39	2009 2043 2077 2112	513.3 538.8 565.0	3685 3782 3879 3978	445 444 443 442
φ	(x)	(Y)	(T)	(v)	40 41	2146 2180	592°2 620°3 649°3	4078 4179	441 441
° 2°0 1°0 0	555 206 0	11.4 1.9 0	435 189 0	1764 1192 1000	42 43 44 45	2214 2247 2281 2315	679'3 710'4 742'5 775'9	4282 4386 4492 4600	441 441 441 441

XVII.

Values of $\{1000 \div v\}^3$.

7'	0										
		I	2	3	4	5	6	7	8	9	7
<i>f.s.</i>	15.63		15:20	15.28	15.17	15.05	14.94	14.83	14'72	14.62	- II
40	1303	15.21	15.39	14.20	14.09	13.99	13.89	13.79	13.69	13.20	IO
42	13.20	13.40	13.31	13.51	13.15	13.03	12.94	12.85	12.76	12.67	2
43	1 2.578	2.491	2.404	2.318	2.233	2.149	2.065	1.983	1.001	1.820 1.048	8.4
44	1.739 0.974	1*660 0*901	r·581 0·829	1.203 0.727	1°425 0°686	1·348 0·616	1°272 0°547	1°197 0°478	1°122 0'409	0.341	77
45	0 9/4	0.901	0 0 2 9	0151	0.000	0.010					1
46	1 0.274	0.302	0°I4I	0.075	0.010	*9.946	*9.882	*9.819	*9.756	*9.694	64
47	09.632	9.571	9.210	9°450 8°875	9°390 8'820	9.331 8.766	9 ^{.272} 8 ^{.711}	9 [.] 214 8 [.] 658	9 ^{.156} 8 ^{.605}	9 [.] 099 8 [.] 552	59 54
48	9.042 8.200	8·986 8·448	8·930- 8·397	8.346	8.295	8.245	8.195	8.146	8.003	8.048	50
50	8.000	7.952	Z. 902	7.858	7.811	7.765	7.719	7.673	7.628	7.283	46
51	7.539	7°494 7°071	7°451 7°031	7:407 6:990	7°364 6'950	7°321 6°911	7 ^{.279} 6 ^{.8} 71	7 ^{.2} 37 6 ^{.8} 32	6.794	7.153	43
52	6.717	6.679	6.642	6.604	6.267	6.530	6.494	6.458	6.422	6.386	37
54	6.321	6.316	6.281	6.246	6.212	6.128	6.144	6.110	6.077	6.043	34
55	6.011	5.978	5*945	5.913	5.881	5.820	5.818	5.787	5.756	5.725	32
56	5.694	5.664	5.634	5.604	5.574	5.544	5.212	5.486	5.457	5.428	30
57	5.400	5.372	5:343	5.315	5.288	5.260	5.233	5.206	5.179	5.152	28
58	5.125	5.099	5.073	5.042	5.021	4.995	4.969	4.944	4.919	4.894	26
59	4.869	4.844	4.820	4.796	4.771	4.747	4'724	4.4.200	4.676	4.653	24
100	4 030	4 007	4 304	4 501	4 5 50	4 510	4 494	4 4/*	4 449	4 4~/	23
61	4.400	4.384	4.363	4.341	4.320	4.299	4.278	4.257	4.237	4.216	21
62	4.196	4.176	4.126	4.136	4.110	4.096	4.076	4.057	4.038	4.018 3.833	20
63	3.999	3.980	3.961 3.779	3.943	3.924	3.906	3.887	3.869	3.851	3.628	19
65	3.641	3 625	3.608	3.201	3.575	3.559	3.542	3.526	3.210	3.494	16
	1										
66	3.478	3.463	3.447	3.431 3.281	3.416	3.400	3.385	3.370	3.355	3.340	15
68	3.180	3.166	3.122	3.139	3.125	3.111	3.098	3.084	3 071	3.057	14
69	3.044	3.031	3.018	3.002	2.992	2.979	2.966	2.953	2.941	2.928	13
70	2.912	2.903	2.891	2.878	2.866	2.854	2.842	2.830	2.818	2.806	12
71	2.794	2.782	2.770	2.759	2.747	2.736	2.724	2.713	2.702	2.690	12
72	2.679	2.668	2.657	2.646	2.635	2.624	2.613	2.603	2.592	2.281	II
73	2.2.1	2.260	2.220	2.539	2.529	2.518	2.208	2.458	2.488	2.478	IO
74	2.408	2.458	2.448	2.438	2.428	2.418	2.409	2.399	2·389 2·296	2.379 2.287	10
13	- 370	2 301	2 332	- 544	- 555	1 - 3-4	1 - 514	~ 303	1 290	2201	1

XVII. (continued).

 $\{1000 \div v\}^3$.

	14	1	1	1						· · ·	
v	0	I	2	3	4	5	6	7	8	9	Δ
J. s.											-
76	2.2780	2691	2601	2513	2424	2337	2249	2162	2076	1990	88
77	1904 1073	1819	0911	1650 0831	1566	1483 0672	1400	1318	1235	1154	83
79	0282	0206	0129	0053	*9977	*9902	0594 *9827	0515 *9753	0437 *9679	0360 *9605	79
So	1.9231	9458	9386	9313	9241	9170	9098	9755	8957	8887	75
						5-1-	1-1-	57	0,31	0007	12
81	1.8812	8747	8678	8609	8541	8473	8405	8337	8270	8203	68
82 83	8137	8071	8005	7939	7874	7809	7744	7680	7616	7552	65
84	7489 6872	6812	7363	7301	7239 6633	7177 6574	7115	7054	6993 6399	6932	62
85	6283	6226	6169	6112	6056	5999	5943	5888	5832	6341 5777	59 56
					5.50	3777	3743	1,000	J°J=	5/1/	50
86	1. 5722	5667	5613	5559	5505	5451	5397	5344	5291	5239	54
87 88	5186	5134	5082	5030	4978	4927	4876	4825	4775	4724	51
89	4674	4624	4575	4525	4476	4427	4378	4329 3856	4281 3809	4233	49
90	3717	4137	3626	4043 3581	3536	3949 3491	3902 3447	3402	3358	3763 3314	47
	57-7	5072	J	55	5550	547-	5777	3402	3330	55-4	45
91	1.3220	3227	3183	3140	3097	3054	3011	2969	2926	2884	43
92	2842	2800	2759	2717	2676	2635	2594	2553	2513	2473	41
93	2432	2392	2352	2313	2273	2234 1850	2195 1812	2156	2117	2078	39
94 95	2040 1664	2001 1627	1963 1590	1925 1554	1887 1517	1481	1445	1775 1410	1738 1374	1700 1338	38 36
23	1004	1027	1390	-334	*3*7	.401	1443	1410	*374	*330	30
96	1.1303	1268	1233	1198	1163	1128	1094	1059	1025	0991	35
97	0957	0923	0889	0856	0822	0789	0756	0723	0690	0657	33
98	0625	0592	0560	0528	0496 0182	0464	0432	0400	0369 0060	0337	32
99 100	0306	0275 *9970	0244 *9940	0213 *9911	*9881	0152 *9852	0121 *9822	0091 *9793	*9764	*9735	31 30
100	0000	9970	9940	9911	9001	9032	9022	9195	9704	9133	50
101	0.9200	9677	9649	9620	9592	9563	9535	9507	9479	9451	28
102	9423	9396	9368	934 I	9313	9286	9259	9232	9205	9178	27
103	9151	9125	9098	9072	9046	9019	8993	8967	8941 8688	8916	26
104 105	8890 8638	8864 8614	8839 8589	8814 8565	8788 8540	8763 8516	8738 8492	8713 8468	8444	8663 8420	25 24
105	0030	0014	0309	0303	0540	0310	0492	0400	0444	0420	24
106	0.8396	8373	8349	8325	8302	8279	8255	8232	8209	8186	23
107	8163	8140	8117	8095	8072	8050	8027	8005	7983	7960	23
108	7938	7916	7894	7873	7851	7829	7808	7786	7765	7743	22
109 110	7722	7701	7680	7658	7637	7617 7412	7596 7392	7575	7554 7352	7534	21 20
110	7513	7493	7472	7452	7432	1412	1392	1312	1352	1334	20
III	0.7312	7292	7273	7253	7233	7214	7195	7175	7156	7137	19
II2	7118	7099	7080	7061	7042	7023	7005	6986	6967	6949	19
113	6931	6912	6894	6876	6857	6839	6821	6803	6785 6610	6768	18
114	6750	6732	6714	6697 6524	6679 6507	6662 6490	6644 6473	6627 6457	6440	6592 6423	17
115	6575	6558	6541	0524	0307	0490	04/3	5457			

XVII. (continued).

 $\{IOCO \div v\}^3.$

						1					
v	ο	I	2	3	4	5	6	7	8	9	
<i>f. s.</i> 116 117 118 119 120	0 [.] 6407 6244 6086 5934 5787	6390 6228 6071 5919 5773	6374 6212 6056 5904 5758	6357 6196 6040 5890 5744	6341 6180 6025 5875 5730	6324 6164 6010 5860 5715	6308 6149 5994 5845 5701	6292 6133 5979 5831 5687	6276 6117 5964 5816 5673	6260 6102 5949 5802 5659	- 16 16 15 15 14
121 122 123 124 125	0 [.] 5645 5507 5374 5245 5120	5631 5494 5361 5232 5108	5617 5480 5348 5220 5096	5603 5467 5335 5207 5083	5589 5453 5322 5194 5071	5575 5440 5309 5182 5059	5562 5427 5296 5170 5047	5548 5413 5283 5157 5035	5534 5400 5270 5145 5023	5521 5387 5258 5132 5011	14 13 13 13 12
126 127 128 129 130	0 [•] 4999 4882 4768 4658 4552	4987 4870 4757 4648 4541	4975 4859 4746 4637 4531	4964 4848 4735 4626 4520	4952 4836 4724 4615 4510	4940 4825 4713 4605 4500	4928 4813 4702 4594 4489	4917 4802 4691 4583 4479	4905 4791 4680 4573 4469	4893 4780 4669 4562 4458	12 11 11 11 11 10
131 132 133 134 135	0 [.] 4448 4348 4251 4156 4064	443 ⁸ 433 ⁸ 4241 4147 4055	4428 4328 4231 4138 4046	4418 4318 4222 4128 4037	4408 4309 4212 4119 4029	4398 4299 4203 4110 4020	4388 4289 4194 4101 4011	4378 4279 4184 4092 4002	4368 4270 4175 4083 3993	4358 4260 4165 4074 39 ⁸ 4	10 10 9 9 9
136 137 138 139 140	0 [.] 3975 3889 3805 3724 3644	3967 3881 3797 3716 3637	3958 3872 3789 3708 3629	3949 3864 3780 3700 3621	3941 3855 3772 3692 3613	3932 3847 3764 3684 3606	3923 3838 3756 3676 3598	3915 3830 3748 3668 3590	3906 3822 3740 3660 3583	3898 3813 3732 3652 3575	9 8 8 8
141 142 143 144 145	0* 3567 3493 3420 3349 3280	3560 3485 3413 3342 3273	3552 3478 3405 3335 3267	3545 3470 3398 3328 3260	3537 3463 3391 3321 3253	3530 3456 33 ⁸ 4 33 ¹ 4 3 ² 47	3522 3449 3377 3308 3240	3515 3441 3370 3301 3233	3507 3434 3363 3294 3227	3500 3427 3356 3287 3220	8 7 7 7 7 7
146 147 148 149 150	0°3 2132 1481 0847 0230 0°2 9630	2066 1417 0785 0169 9570	2001 1353 0722 0109 9511	1935 1289 0660 0048 9452	1870 1225 0598 *9988 9394	1804 1162 0537 *9928 9335	1739 1099 0475 *9868 9277	1674 1036 0414 *9808 9219	1610 0973 0352 *9748 9161	1545 0910 0291 *9689 9103	65 63 62 60 59
151 152 153 154 155	0°2 9045 8475 7921 7380 6854	8987 8419 7866 7327 6802	8930 8363 7811 7274 6750	8872 8307 7757 7221 6698	8815 8252 7703 7168 6647	8758 8196 7649 7115 6596	8701 8141 7595 7063 6544	8645 8086 7541 7010 6493	8588 8030 7487 6958 6442	8532 7975 7434 6906 6391	57 56 54 53 51

XVIII.

 $W_{\phi} = \tan \phi \left(\sec^{5} \phi + \frac{5}{4} \sec^{3} \phi + \frac{15}{8} \sec \phi \right) + \frac{15}{8} \log_{e} \tan \left(\frac{\pi}{4} + \frac{\phi}{2} \right).$

i	1		1	1			
φ	W_{ϕ}	Log W_{ϕ}	$\operatorname{Log} \Delta W_{\phi}$	φ	W_{ϕ}	Log W_{ϕ}	$\log \Delta W_{\phi}$
$\begin{array}{c} 1^{\circ} \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 3 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 5 \\ 36 \\ 37 \\ 38 \\ 9 \\ 40 \end{array}$	oʻ10476 oʻ20974 oʻ31517 oʻ22127 oʻ52829 oʻ63646 oʻ74603 oʻ85725 oʻ97040 1'0858 1'2036 1'3243 1'4482 1'5757 1'7070 1'8428 1'9834 2'1293 1'7776 2'9834 2'1293 2'2811 2'7786 2'9609 3'1529 3'3557 3'5703 3'7772 4'2904 4'5757 7'2427 7'772427 7'772427 7'772427 7'772427	9'02020 9'32168 9'49855 9'62456 9'72287 9'87276 9'93311 9'98695 o'0573 o'08049 o'12200 o'16083 o'19746 o'23224 o'20547 o'29740 o'232823 o'35815 o'38730 o'41582 o'44383 o'47143 o'5957 o'60645 o'63341 o'65271 o'59577 o'60645 o'63341 o'68783 o'71543 o'71543 o'743377 o'77173 o'80556 o'82992 o'85990 o'95416	9'02020 9'02111 9'02296 9'02572 9'02947 9'03411 9'03969 9'04618 9'05366 9'07140 9'08174 9'09300 9'10527 9'11850 9'10527 9'11850 9'10527 9'11850 9'10527 9'11850 9'10527 9'11850 9'10527 9'11850 9'10527 9'11850 9'10527 9'11850 9'10527 9'11850 9'10527 9'11850 9'10527 9'11850 9'10527 9'11850 9'11850 9'10527 9'11850 9'1185	41° 423 44456 467 48 49 551 52 53 54556 57 58 590 61 23 64 656 67 68 69 70 1 72 73 745 76 77 89 80	9.7112 10.504 11.389 12.381 13.497 14.758 16.189 17.821 19.690 21.841 24.330 27.224 30.608 34.588 39.298 44.906 51.629 259.744 69.614 81.711 96.661 115.30 138.76 168.59 206.92 256.75 322.33 409.83 528.28 691.22 919.27 1244.7 17.19.2 12.24.7 1	0.98727 1.02135 1.05648 1.09274 1.13023 1.16902 1.20922 1.25093 1.29424 1.33927 1.38612 1.43495 1.59437 1.65230 1.71289 1.77630 1.84270 1.91228 1.98525 2.06184 2.14228 2.22684 2.14228 2.22684 2.14228 2.2051 2.50331 2.61260 2.72286 2.83962 2.96344 3.50551 2.505331 2.505322 2.505331 2.505322 2.505331 2.505322 2.505331 2.505322 2.505331 2.505322 2.505331 2.505322 2.505331 2.505322 2.505331 2.505322 2.5052	9.89910 9.94691 9.99641 0.04767 0.10075 0.15573 0.21265 0.27160 0.33268 0.39595 0.46151 0.52946 0.59992 0.67300 0.74882 0.82755 0.90931 0.99430 1.08268 1.17464 1.27049 1.37035 1.47462 1.58353 1.69747 1.81681 1.94199 2.07352 2.21204 2.35804 2.51250 2.67617 2.85019 3.03579 3.23448 3.44813 3.67899 3.92994 4.20462

284 RESISTANCE VARYING AS THE SIXTH POWER OF THE VELOCITY.

XIX.

											-
21	0	I	2	3	4	5	6	7	8	9	2
f.s. 50 51 52	64.00 56.83 50.57	63 ^{.24} 56 ^{.17} 50 ^{.00}	62·49 55·51 49·42	61·74 54·87 48·86	61.01 54.23 48.31	60°30 53°60 47°76	59 [.] 58 52 [.] 98 47 [.] 22	58.88 52.37 46.68	58·19 51·76 46·15	57°50 51°17 45°63	- 72 63 55
53	45 ^{.12}	44 ^{.61}	44°11	43 ^{.62}	43 ^{.13}	42 ^{.65}	42°17	41.70	41.24	40 [.] 78	48
54	4 ^{0.33}	39 ^{.89}	39°45	39 ^{.01}	3 ^{8.58}	38 ^{.16}	37'74	37.33	36.93	36 [.] 52	42
55	36 ^{.13}	35 ^{.74}	35°35	34 [.] 97	34 ^{.59}	34 ^{.22}	33'85	33.49	33.13	32 [.] 77	37
56	32°42	32.08	31·74	31·40	31.07	30 ^{.74}	30 [.] 42	30'10	29•78.	29·47	33
57	29°16	28.85	28·55	28·25	27.96	27 ^{.67}	27 [.] 38	27'10	26•82	26·54	29
58	26°27	26.00	25·73	25·47	25.21	24 ^{.95}	24 [.] 70	24'44	24•20	23·95	26
59	23.71	23·47	23·23	23.00	22.77	22 [.] 54	22°31	22:09	21.87	21.65	23
60	21.43	21·22	21·01	20.80	20.60	20 [.] 39	20°19	19:99	19.80	19.60	20
61	19.41	19·22	19·03	18.85	18.66	18 [.] 48	18°30	18:13	17.95	17.78	18
62	17.61	17·44	17 [.] 27	17.10	16.94	16.78	16.62	16·46	16·30	16 [.] 15	16
63	16.00	15·84	15 [.] 69	15.54	15.40	15.25	15.11	14·97	14·83	14 [.] 69	15
64	14.55	14·42	14 [.] 28	14.15	14.02	13.89	13.76	13·63	13·51	13 [.] 38	13
65	13.26	13°14	13.02	12 . 90	12.78	12.66	12.55	12 : 43	12.32	12.51	12
66	12.10	11°99	11.88	1177	11.67	11.56	11.46	11:36	11.25	11.12	11
67	11.05	10°96	10.86	1076	10.67	10.57	10.48	10:39	10.30	10.50	9
68	10 [.] 114	10 ^{.025}	9·938	9 ^{.851}	9 [.] 765	9 [.] 679	9 [.] 595	9 ^{.512}	9 [.] 429	9°347	85
69	9 [.] 266	9 ^{.186}	9·106	9 ^{.027}	8 [.] 950	8 [.] 874	8 [.] 797	8 ^{.722}	8 [.] 646	8°572	77
70	8 [.] 500	8 [.] 427	8·355	8 [.] 284	8 [.] 214	8 [.] 144	8 [.] 076	8 ^{.007}	7 [.] 940	7°873	70
71	7 [.] 806	7·741	7:676	7 [.] 611	7·548	7·485	7·422	7·360	7·299	7·238	63
72	7 [.] 178	7·119	7:060	7 ^{.001}	6·943	6·886	6·829	6·773	6·718	6·662	57
73	6 [.] 608	6·554	6:500	6 [.] 447	6·395	6·343	6·291	6·240	6·190	6·140	52
74	6 ·090	6·041	5.992	5°944	5·896	5·849	5·802	5 ^{.755}	5·709	5.664	47
75	5·619	5·574	5.530	5°486	5·442	5·399	5·356	5 ^{.314}	5·272	5.230	43
76	5·189	5·149	5.108	5°068	5·028	4·989	4·950	4 ^{.912}	4·873	4.836	39
77	4.798	4°761	4·724	4 ^{.687}	4.651	4.615	4.580	4°544	4.509	4°475	36
78	4.440	4°407	4·373	4 ^{.339}	4.306	4.273	4.241	4°209	4.177	4°145	33
79	4.114	4°083	4·052	4 ^{.021}	3.991	3.961	3.931	3°902	3.872	3°843	30
80	3 ^{.815}	3.786	3·758	3·730	3·702	3.675	3.647	3.620	3·594	3·567	28
81	3 ^{.541}	3.515	3·489	3·463	3·438	3.412	3.387	3.362	3·338	3·314	25
82	3 ^{.289}	3.265	3·242	3·218	3·195	3.172	3.149	3.126	3·103	3·081	23
83	3.059	3.037	3.015	2·993	2:972	2:950	2·929	2·908	2·888	2·867	21
84	2.847	2.826	2.806	2·786	2:767	2:747	2·728	2·708	2·689	2·670	20
85	2.651	2.633	2.614	2·596	2:578	2:560	2·542	2·524	2·507	2·489	18

$\{1000 \div v\}^6$.

RESISTANCE VARYING AS THE SIXTH POWER OF THE VELOCITY. 285

XIX. (continued).

 $\{1000 \div \upsilon\}^6.$

v	0	I	2	3	4	5	6	7	8	9	
J. s. 86 87 88	2.472 2.306 2.153	2°455 2°290 2°139	2°438 2°275 2°124	2°421 2°259 2°110	2°404 2°244 2°095	2·387 2·228 2·081	2°371 2°213 2°067	2°354 2°198 2°053	2.338 2.183 2.039	2.322 2.168 2.026	- 17 15 14
89	2°012	1°999	1.985	1.972	1.959	1 °946	1.933	1 °920	1.907	1.894	13
90	1°882	1°869	1.857	1.844	1.832	1 °820	1.808	1 °796	1.784	1.773	12
91	1°761	1°749	1.738	1.727	1.715	1 °704	1.693	1 °682	1.671	1.660	11
92	1.649	1.638	1.628	1.617	1.607	1 •596	1.586	1 °576	1 °566	1.556	10
93	1.546	1.536	1.526	1.516	1.506	1 •497	1.487	1 °478	1 °468	1.459	10
94	1.450	1.440	1.431	1.422	1.413	1 •404	1.395	1 °386	1 °378	1.369	9
95	1° 3604	3518	3433	3349	3265	3182	3099	3017	2936	2855	83
96	2775	2696	2617	2539	2461	2384	2307	2231	2155	2080	77
97	2005	1931	1858	1785	1713	1641	1569	1498	1428	1358	72
98	1° 1289	1220	1151	1084	1016	0949	0883	0817	0751	0686	67
99	0622	0557	0494	0431	0368	0305	0243	0182	0121	0060	62
100	0000	*9940	*9881	*9822	*9764	*9705	*9647	*9590	*9533	*9477	58
101	0° 9420	9365	9309	9254	9200	9146	9092	9038	8985	8932	54
102	8880	8828	8776	8725	8674	8623	8573	8523	8473	8424	51
103	8375	8326	8278	8230	8182	8135	8088	8041	7995	7949	47
104	0 [.] 7903	7858	7813	7768	7723	7679	7635	7591	7548	7505	44
105	7462	7420	7378	7336	7294	7252	7211	7171	7130	7090	41
106	7050	7010	6970	6931	6892	6853	6815	6777	6739	6701	39
107	0.6663	6626	6589	6552	6516	6480	6444	6408	6372	6337	36
108	6302	6267	6232	6198	6163	6129	6096	6062	6029	5996	34
109	5963	5930	5897	5865	5833	5801	5769	5738	5707	5676	32
110	0° 5645	5614	5584	5553	5523	5493	5463	5434	5405	5375	30
111	5346	5318	5289	5261	5232	5204	5176	5149	5121	5094	28
112	5066	5039	5012	4986	4959	4933	4906	4880	4854	4829	26
113	0° 4803	4778	4752	4727	4702	4678	4653	4628	4604	4580	25
114	4556	4532	4508	4485	4461	4438	4415	4392	4369	4346	23
115	4323	4301	4278	4256	4234	4212	4190	4169	4147	4126	22
116	0° 4104	4083	406 2	4041	4021	4000	3979	3959	3939	3918	21
117	3898	3878	3859	3839	3819	3800	3781	3761	3742	3723	19
118	3704	3686	3667	3648	3630	3612	3593	3575	3557	3539	18
119	3521	3504	3486	3469	3451	3434	3417	3400	3383	3366	17

XX.

 $\log \tau$ corresponding to temperatures and pressures when the air is $\frac{2}{3}$ rds saturated with moisture.

								1		
Tem- pera-	15 in.	20 in.	22 in.	24 in.	26 in.	27 in.	28 in.	29 in.	20 in.	31 in.
ture	1 3	20				- /				51
F										
9°	9.7453	8703	9117	9494	9842	*0006	*0164	*0317	*0464	*0606
10	7444	8693	9107	9485	9832	9996	*0154	*0306	*0454	*0596
II	7434	8684	9098	9476	9823	9987	*0145	*0297	*0445	*05Š7
12	9.7425	8674	9088	9466	9813	9977	*0135	*0288	*0435	*0577
13	7415	8665	9079	9457	9804	9968	*0126	*0278	*0426	*0568
14	7406	8656	9070	9447	9796	9959	*0117	*0269	*0417	*0559
15	9.7397	8646	9061	9438	9786	9950	*0108	*0260	*0408	*0550
16	7388	8637	9051	9429	9777	9941	*0099	*0251	*0398	*0541
17	7379	8628	9042	9420	9768	9931	*0089	*0242	*0389	*0532
18	9.7370	8619	9033	9411	9759	9922	*0080	*0233	*0380	*0522
19	7360	8609	9023	9401	9749	9913	*0071	*0223	*0371	*0513
20	7351	8600	9014	9392	9740	9903	*0062	*0215	*0361	*0503
21	9.7342	8591	9005	9383	9730	9895	*0052	*0205	*0352	*0495
22	7332	8582	8996	9374	9721	9885	*0043	*0195	*0343	*0485
23	7324	8573	8987	9365	9713	9876	*0034	*0187	*0334	*0476
24	9.7314	8564	8978	9356	9703	9867	*0025	*0177	*0325	*0467
25	7305	8555	8968	9346	9694	9858	*0016	*0168	*0315	*0458
26	7296	8545	8959	9337	9684	9848	*0006	*0159	*0306	*0448
27	9.7286	8536	8950	9327	9675	9839	9997	*0149	*0297	*0439
28	7277	8527	8941	9319	9667	9830	9988	*0141	*0288	*0430
29	7268	8517	8932	9309	9657	9821	9979	*0131	*0278	*0421
30	9.7259	8508	8922	9300	9647	9811	9969	*0122	*0269	*0412
31	7250	8499	8913	9291	9639	9803	9961	*0113	*0260	*0403
32	7240	8490	8904	9281	9629	9793	9951	*0103	*0251	*0393
33	9.7232	8481	8895	9273	9620	9785	9942	*0095	*0242	*0384
34	7222	8471	8886	9263	9611	9775	9933	*00\$5	*0233	*0375
35	7214	8463	8877	9255	9602	9766	9924	*0077	*0224	*0366
36	9.7204	8454	8868	9246	9593	9757	9915	*0068	*0215	*0357
37	7195	8444	8858	9236	9584	9747	9906	*0058	*0205	*0347
38	7186	8435	8850	9227	9575	9739	9897	*0049	*0197	*0339
39	9.7176	8426	8840	9218	9565	9729	9887	*0039	*0187	*0329
40	7168	8418	8832	9210	9557	9721	9879	*0032	*0179	*0321
41	7160	8409	8823	9201	9548	9712	9870	*0023	*0170	*0312
42	9.7150	8399	8813	9191	9539	9703	9861	*0013	*0160	*0302
43	7142	8391	8805	9183	9530	9694	9852	*0005	*0152	*0294
44	7132	8382	8795	9173	9521	9685	9843	9995	*0142	*0284
45	9.7124	8373	8787	9165	9512	9676	9834	9987	*0134	*0276
46	7114	8363	8777	9155	9503	9667	9825	9977	*0124	*0267
47	7105	8354	8768	9146	9494	9658	9815	9968	*0115	*0258
48	9. 7097	8346	8760	9138	9486	9650	9807	9960	*0107	*0249
49	7087	8337	8750	9128	9476	9640	9798	9950	*0097	*0240
50	7078	8327	8741	9119	9466	9631	9789	994I	*0088	*0230
51	9. 7070	8319	8733	9111	9459	9622	9780	9933	*ooSo	*0222
52	7061	8311	8724	9103	9450	9614	9772	9925	*0072	*0214
53	7052	8301	8716	9093	9441	9605	9763	9915	*0063	*0205
			F							

XX. (continued).

Tem- pera-	15 in.	20 in.	22 in.	24 in.	26 in.	27 in.	28 in.	29 in.	30 in.	31 in.
ture F 54° 55 56	9.7042 7033 7024	8292 8283 8273	8706 8696 8687	9083 9074 9065	943I 9422 9413	9595 9586 9577	9753 9744 9735	9905 9896 9887	*0053 *0043 *0034	*0195 *0186 *0177
50 57 58 59	9. 7015 7007 6997	8264 8256 8246	8678 8670 8661	9056 9048 9038	9404 9395 9386	9567 9559 9550	9725 9717 9708	9878 9870 9860	*0025 *0017 *0007	*0167 *0159 *0150
60	9 [•] 6988	8237	86 51	9029	9377	9 5 40	9699	9851	9998	*0141
61	6980	8229	8643	9021	9368	9532	9690	9843	9990	*0132
62	69 7 0	8220	8633	9011	9359	9523	9681	9833	9980	*0123
63	9 [.] 6961	8211	8624	9002	93 50	9514	9672	9824	9971	*0114
64	6952	8201	8615	8993	9340	9504	9662	9815	9962	*0104
65	6942	8191	8606	8983	9331	9495	9653	9805	9952	*0095
66	9 [.] 6934	8183	8597	8975	9323	9487	9644	9797	9944	*0086
67	6925	8174	8588	8965	9313	9477	9635	9787	9935	*0077
68	6916	8165	8 57 9	8957	9304	9468	9627	9779	9926	*0069
69	9° 6 907	8156	8570	8948	9296	9460	9618	9770	9918	*0060
70	6898	8147	8561	8939	9287	9450	9609	9761	9908	*0051
71	6888	8138	8552	8929	9277	9441	9599	9752	9899	*0041
72	9 [.] 6880	8129	8543	8921	9269	9432	9590	9743	9890	*0032
73	6871	8120	8535	8912	9260	9424	9582	9734	9882	*0024
74	6862	8111	8526	8904	9251	9415	9573	9726	9873	*0015
75	9 [.] 6853	8102	8516	8894	9242	9406	9564	9716	9863	*0006
76	6843	8093	8506	8885	9232	9396	9554	9706	9853	9996
77	6835	8084	8498	88 7 6	9224	938 7	9545	9698	9845	9987
78	9 [.] 6825	8075	8488	8866	9214	9378	9536	9688	9835	9978
79	6816	8066	8479	8858	9205	9369	9527	9679	9827	9969
80	6807	8056	8470	8848	9195	9359	9517	9670	9817	9959
81	9 [.] 6797	8046	8460	8838	9186	93 5 0	9508	9660	9807	9950
82	6788	8037	8452	8829	91 77	9341	9499	9651	9799	9941
83	6779	8029	8443	8821	9168	9332	9490	9643	9790	9932
84	9 [.] 6771	8020	8434	8812	91 5 9	9323	9481	9634	9781	9923
85	6761	8011	8424	8802	9150	9314	9471	9624	9771	9914
86	6752	8001	8415	8793	9141	9304	9463	9615	9762	9905
87	9 [•] 6743	7993	8406	8784	9132	9296	9454	9606	9753	9896
88	6733	7982	8397	8774	9122	9286	9444	9596	9744	9886
89	6724	7973	8388	8766	9113	9277	9435	9588	9735	9877
90	9° 6715	7964	8378	8756	9104	9268	9426	9578	9726	9868
91	6706	7955	8369	8747	9094	9258	9416	9568	9716	9858
92	6695	7945	8359	8737	9084	9248	9406	9559	9 706	9848
93	9 [•] 6687	7936	8350	8728	9075	9239	9397	9550	9697	9839
94	6677	7926	8340	8718	9066	9229	9387	9540	9687	9829
95	6668	7917	8331	8709	9056	9220	9378	9531	9678	9820
96	9° 6658	7907	8321	8699	9047	9210	9368	9521	9668	9810
97	6647	7897	8311	8689	9036	9200	9358	9510	9658	9800
98	6637	7887	8301	8679	9027	9190	9349	9501	9648	9790
99	9°6628	7878	8291	8669	9016	9180	9338	9490	9638	9780
100	9°6619	7868	8281	8659	900 7	9171	9329	9482	9629	9771

XXI.

Log τ for various heights, gravity and temperature being supposed constant.

		Ĩ								
Ht.	000	100	200	300	400	500	600	700	800	900
Feet 39 38 37 36	9° 4646 4802 4958 5114	4630 4786 4942 5098	4615 4771 4927 5083	4599 4755 4911 5067	45 ⁸ 3 4739 4 ⁸ 95 5051	4568 4724 4880 5036	4552 4708 4864 5020	4537 4693 4849 5005	4521 4677 4833 4989	4505 4661 4817 4973
35	9 [.] 5270	5254	5239	5223	5207	5192	5176	5161	5145	5129
34	5426	5410	5394	5379	5363	5348	5332	5316	5301	5285
33	5582	5566	5550	5535	5519	5504	5488	5472	5457	5441
32	9 [•] 5738	5722	5706	5691	5675	5660	5644	5628	5613	5597
31	5894	5878	5862	5847	5831	5816	5800	5784	5769	5753
30	6050	6034	6018	6003	5987	5972	5956	5940	5925	5909
29	9 [.] 6206	6190	6174	6159	6143	6128	6112	6096	6081	6065
28	6362	6346	6330	6315	6299	6284	6268	6252	6237	6221
27	6518	6502	6486	6471	6455	6440	6424	6408	6393	6377
26	9 [.] 6674	6658	6642	6627	6611	6596	6580	6564	6549	6533
25	6830	6814	6798	6783	6767	6752	6736	6720	6705	6689
24	6985	6970	6954	6939	6923	6907	6892	6876	6861	6845
23	9°7141	7126	7110	7095	7079	7063	7048	7032	7016	7001
22	7297	7282	7266	7251	7235	7219	7204	7188	7173	7157
21	7453	7438	7422	7407	7391	7375	7360	7344	7329	7313
20	9 [.] 7609	7594	7578	7563	7547	7531	7516	7500	7485	7469
19	7765	7750	7734	7719	7703	7687	7672	7656	7641	7625
18	7921	7906	7890	7875	7859	7843	7828	7812	7797	7781
17	9 [.] 8077	8062	8046	8031	8015	7999	7984	7968	7953	7937
16	8233	8218	8202	8187	8171	8155	8140	8124	8109	8093
15	8389	8374	8358	8343	8327	8311	8296	8280	8265	8249
I4	9° 8545	8530	8514	8498	8483	8467	8452	8436	8420	8405
I3	8701	8686	8670	8654	8639	8623	8608	8592	8576	8561
I2	8857	8842	8826	8810	8795	8779	8764	8748	8732	8717
11	9° 9013	8998	8982	8966	8951	8935	8920	8904	8888	8873
10	9169	9154	9138	9122	9107	9091	9076	9060	9044	9029
9	9325	9310	9294	9278	9263	9247	9232	9216	9200	9185
8	9 [.] 9481	9466	9450	9434	9419	9403	9388	9372	9357	9341
7	9637	9622	9606	9590	9575	9559	9544	9528	9512	9497
6	9793	9778	9762	9746	9731	9715	9700	9684	9668	9653
5	9 [.] 9949	9934	9918	9902	9887	9871	9856	9840	9824	9809
4	0 [.] 0105	0089	0074	0058	0043	0027	0011	*9996	*9980	*9965
3	0261	0245	0230	0214	0199	0183	0167	0152	0136	0121
2	0°0417	0401	0386	0370	0355	0339	0323	0308	0292	0277
I	0573	0557	0542	0526	0511	0495	0479	0464	0448	0433
O	0729	0713	0698	0682	0667	0651	0635	0620	0604	0589
Feet	0	+ 10	+ 20	+ 30	+40	+ 50	+ 60	+ 70	+ 80	+ 90
Diff. in Log 7	0	- '0002	0003	- '0005	0006	- *0008	- '0009	- '001 I	- '0013	-*0014

XXII. (1) Spherical Projectiles.

vz in.3 in.4 in.5 in.6 in.7 in.8 in.9 in.10 in.11 in.12 in.f.r.lbs. <th></th>												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V	2 in.	3 in.	4 in.	5 in.	6 in.	7 in.	8 in.	9 in.	10 in.	II in.	12 in.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.	lbe	lbe	lhe	lhe	lbg	the	lha	lbe	lhe	114	11.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		18										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1100	-23	51	102	1 39		312	400	-	037	111	91/
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I 200	33	75	134	209		409	534	676	835	1010	1202
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		41	91	162	254	365	497	649		1015	1228	1461
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1400	48	109	194	303		593	775	981	1211	1466	1744
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			108	0.07	255			008				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					333	511						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1705		107	290	403	000	907	1105	1499	1851	2240	2000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1800	83	187	.332	518	746	1016	1327	1679	2073	2508	2985
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1000				530	835	1137					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- 1				652	020		1660				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								1				
(2) Ogival-headed Projectiles $(1\frac{1}{2} \text{ diameter})$. (2) Ogival-headed Projectiles $(1\frac{1}{2} \text{ diameter})$. (2) Ogival-headed Projectiles $(1\frac{1}{2} \text{ diameter})$. (3) $O^{-1} O^{-2} O^{-3} O^{-5} O^{-7} O^{-9} O^{-9} I^{-2} I^{-5} I^{-5} O^{-7} O^{-9} I^{-2} I^{-5} O^{-7} I^{-7} O^{-9} I^{-2} I^{-5} I^{-5} O^{-7} I^{-7} O^{-9} I^{-2} I^{-5} I^{-7} I^{-5} I^{-5} I^{-7} I^{-5} I^{-5} I^{-7} I^{-7} I^{-5} I^{-5} I^{-7} I^{-7} I^{-5} I^{-7} I^{-$				460			1408	1839	2328	2874	3477	4138
f.s.lbs. <th< td=""><td>2200</td><td>125</td><td>281</td><td>500</td><td>781</td><td>II24</td><td>1530</td><td>1999</td><td>2530</td><td>3123</td><td>3779</td><td>4497</td></th<>	2200	125	281	500	781	II24	1530	1999	2530	3123	3779	4497
f.s.lbs. <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td></th<>								1				
f.s.lbs. <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
f.s.lbs. <th< td=""><td></td><td>(</td><td>2) (</td><td>) riva</td><td>l-hea</td><td>ded F</td><td>Project</td><td>ilos (</td><td>1 dia</td><td>meter</td><td>)</td><td></td></th<>		(2) () riva	l-hea	ded F	Project	ilos (1 dia	meter)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(-) 0	8110	1-iica	ucu I	roject	1105 (2 114	meter		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1						1		1	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	f.s.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs	lbs	lbs.	lbs.	lbs.	lbs.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							-					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					-		8.2			16.0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	300											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		I'2	2.2		7.2		14.2	19.3	24'4	30.1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	500	1.0	4.2		11.8	16.9	23.0	30.1	38.1	47.0		67.7
700 800 900 3:7 4*8 6'7 8:3 10*8 15*0 14:7 92*7 23:0 19*2 41*7 33:2 43:3 6*7 45'1 58*9 16*6 58*9 76*9 16*6 74*6 134*9 92*1 120*2 111*4 145*4 132*6 173*1 1000 1000 9'1 17*7 20*6 30*6 36*6 57*2 52*3 82*3 112*0 146*3 18*5*2 185*2 22*6 22*6 276*6 329*2 1100 17*7 39*8 70*7 110*5 159*1 216*6 22*9 35*0 442*0 534*8 636*5 1200 24 53 94 147 212 288 377 477 588 712 847 1300 30 67 119 187 269 366 478 605 747 903 1075 1400 36 81 143 224 323 439 574 726 897 1085 1291 1500 41 93 165 258 371 506 660 330 1151 1393 1658	600	2.7	6.1	10.8	16.0	24.3	33°I	43.3	54.8	67.6	81.8	97.3
$ \begin{array}{ccccccccccccccccccccccccc$			8.0	T 417		2210		r8.0		0217	111.4	122.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5%					451					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		4.8					58.9					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	900	6.2	12.0	26.7	41.2	60.0	81.0	100.0	134.9	100.2	201.0	239.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1000	0.1	20.6	26.6	57.2	82.2	112.0	146.3	185.2	228.6	276.6	329.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									358.0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1200	-4		94								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 300		67	119	187	269	366	478		747		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1400	36	81	143	224	323		574				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1500		93		258			660	836	1032	1248	1486
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-			-	-	-	=64	727	022	TTET	1202	1658
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								816				1825
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1800	50	120	224	351	505	007	897	1130	1402	-	2019
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1900	62	138	246	385	554	754	985	1246	1539	1862	2215
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						612					2060	2451
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								-			2332	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				-	· ·				-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2200	87	196	348	544							3134
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2300		212	376	588							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			220			881	I 200	1567	1983	2448	2962	3525
2600 112 253 450 703 1012 1378 1800 2278 2812 3403 4050 2700 126 282 502 784 1130 1537 2008 2541 3138 3796 4518					6.0	000	1058	1642	2070	2567	2106	3607
2700 126 282 502 784 1130 1537 2008 2541 3138 3796 4518												
			253									
2800 140 314 559 873 1257 1711 2235 2029 3493 4220 3029				-								
	2800	140	314	559	873	1257	1711	2235	2029	3493	4620	3029
		1			1. Contraction 1. Con			· · · · ·				

XXIII. S_v for Spherical Projectiles. (w = 534'22 grams).

v	0	I	2	3	4	5	6	7	8	9	Diff.
<i>f. s.</i>	Feet	+									
40	150	171	192	213	234	255	276	296	317	338	2I
41	359	379	400	420	441	461	481	501	522	542	20
42	562	582	602	622	642	662	682	702	722	742	20
43	761	781	800	820	839	859	878	897	917	936	19
44	955	974	994	1013	1032	1051	1070	1089	1108	1127	19
45	1146	1164	1183	1202	1221	1239	1258	1276	1295	1313	19
46	1331	1350	1 368	1387	1405	1423	1441	1459	1477	1495	18
47	1513	1531	1 549	1567	1585	1602	1620	1638	1656	1673	18
48	1691	1709	1 7 26	1744	1761	1779	1796	1814	1831	1848	17
49	1866	1883	1 900	1917	1934	1951	1968	1985	2002	2019	17
50	2036	2053	2070	2086	2103	2120	2137	2154	2171	2188	17
51	2204	2221	2237	2254	2270	2287	2303	2319	2336	2352	16
52	2368	2384	2401	2417	2433	2449	2465	2481	2497	2513	16
53	2529	2545	2561	2577	2593	2608	2624	2640	2656	2671	16
54	2687	2703	2718	2734	2749	2765	2780	2796	2811	2827	16
55	2842	2858	2873	2888	2904	2919	2934	2949	2965	2980	15
56	2995	3010	3025	3040	3055	3070	3085	3099	3114	3129	15
57	3144	3159	3174	3189	3204	3218	3233	3248	3262	3277	15
58	3291	3306	3320	3335	3349	3364	3378	3393	3407	3421	14
59	3436	3450	3464	3478	3493	3507	3521	3535	3550	3564	14
60	3578	3592	3606	3620	3634	3648	3662	3676	3690	3704	14
61	3718	3731	3745	3759	3773	3786	3800	3814	3828	3841	14
62	3855	3869	3883	3896	3910	3924	3937	3951	3964	3977	14
63	3991	4004	4017	4031	4044	4058	4071	4084	4098	4111	13
64	4124	4137	4150	4163	4176	4189	4203	4216	4229	4242	13
65	4255	4268	4281	4294	4307	4319	4332	4345	4358	4371	13
66 67 68 69 70	4384 4511 4636 4760 4881	4397 4524 4649 4772 4893	4410 4536 4661 4784 4905	4422 4549 4674 4796 4917	4435 4561 4686 4809 4929	4448 4574 4698 4821 4941	4461 4586 4711 4833 4953	4473 4599 4723 4845 4965	4486 4611 4735 4857 4977	4499 4624 4747 4869 4989	13 13 12 12 12 12
71	5001	5013	5025	5037	5049	5060	5072	5084	5096	5107	12
72	5119	5131	5143	5154	5166	5178	5190	5201	5213	5225	12
73	5236	5248	5259	5271	5282	5294	5305	5317	5328	5340	12
74	5351	5363	5374	5385	5397	5408	5420	5431	5442	5453	11
75	5465	5476	5487	5498	5510	5521	5532	5543	5555	5566	11
76	5577	5588	5599	5610	5621	5632	5643	5654	5665	5676	II
77	5687	5698	5709	5720	5731	5742	5753	5764	5775	5785	II
78	5796	5807	5818	5828	5839	5850	5861	5871	5882	5893	II
79	5904	5914	5925	5936	5947	5957	5968	5979	5989	6000	II
80	6010	6021	6031	6042	6052	6063	6073	6084	6094	6105	II
81	6115	6126	6136	6147	6157	6168	6178	6188	6199	6209	IO
82	6219	6229	6240	6250	6260	6270	6281	6291	6301	6311	IO
83	6322	6332	6342	6352	6362	6372	6382	6392	6403	6413	IO
84	6423	6433	6443	6453	6463	6473	6483	6493	6503	6512	IO
85	6522	6532	6542	6552	6561	6571	6581	6591	6600	6610	IO
86 87 88 89 90	6619 6714 6807 6898 6986	6629 6724 6816 6907 6995	6639 6733 6825 6916 7004	6648 6742 6835 6925 7013	6658 6752 6844 6933 7021	6667 6761 6853 6942 7030	6677 6770 6862 6951 7039	6686 6779 6871 6960 7046	6696 6789 6880 6969 7056	6705 6798 6889 6978 7064	10 9 9 9

XXIII. S_v for Spherical Projectiles (continued).

1	1 1										
v	0	I	2	3	4	5	6	7	8	9	Diff.
<i>f. s.</i>	Feet	Feet	Feet	Feet	Feet	Feet	Feet	Feet	Feet	Feet	+ 8 8 8 8 8
91	7073	7082	7090	7099	7107	7116	7124	7133	7141	7149	
92	7158	7166	7175	7183	7191	7200	7208	7216	7225	7233	
93	7241	7249	7257	7266	7274	7282	7290	7298	7306	7314	
94	7322	7330	7338	7346	7354	7362	7370	7378	7386	7394	
95	7402	7409	7417	7425	7433	7441	7448	7456	7464	7472	
96 97 98 99 100	7479 7556 7630 7703 7774	74 ⁸ 7 75 ⁶ 3 7638 7710 7781	7495 7571 7645 7717 7788	7502 7578 7652 7725 7795	7510 7586 7660 7732 7802	7518 7593 7667 7739 7809	7525 7601 7674 7746 7816	7533 7608 7681 7753 7823	7541 7615 7689 7760 7830	7548 7623 7696 7767 7 ⁸ 37	8 7 7 7 7 7
101	7844	7851	7858	7864	7871	7878	7885	7892	7898	7905	77666
102	7912	7918	7925	7932	7938	7945	7951	7958	7964	7971	
103	7977	7984	7990	7997	8003	8010	8016	8022	8029	8035	
104	8041	8047	8053	8060	8066	8072	8078	8084	8091	8097	
105	8103	8109	8115	8121	8127	8133	8139	8145	8151	8157	
106 107 108 109 110	8163 8221 8278 8334 8387.8	8169 8227 8284 8339 393 1	8175 8233 8289 8345 398.4	8180 8238 8295 8350 403.8	8186 8244 8300 8356 409'1	8192 8250 8306 8361 414.4	8198 8256 8312 8366 419*7	8204 8261 8317 8372 425°0	8209 8267 8323 8377 430°2	8215 8272 8328 8383 435.5	6 6 5 5 ⁻ 3
111	8 440 ^{.8}	446°0	451'2	456°5	461.7	466.9	472'1	477 ^{•2}	482.4	4 ⁸ 7.5	5°2
112	492 ^{.7}	497°8	502'9	508°1	513.2	518.3	523'4	528 [•] 4	533.5	538.5	5°1
113	543 ^{.6}	548°6	553'6	558°7	563.7	568.7	573'7	578 [•] 6	583.6	588.5	5°0
114	593 ^{.5}	598°4	603'3	608°3	613.2	618.1	623'0	627 [•] 9	632.7	637.6	4°9
115	642 ^{.5}	647°3	652'1	657°0	661.8	666.6	671'4	676 [•] 2	680.9	685.7	4°8
116	8 690 ^{.5}	695°3	700°0	704.8	709 ⁻ 5	714'3	719°0	723.7	728.4	733'I	4°7
117	737 ^{.8}	742°5	747°1	751.8	756 ⁻ 4	761'1	765°7	770.3	775.0	779'6	4°6
118	784 ^{.2}	788°8	793°4	797.9	802 ⁻ 5	807'1	811°7	816.2	820.8	825'3	4°6
119	829 ^{.9}	834°4	838°9	843.5	848 ⁻ 0	852'5	857°0	861.5	865.9	870'4	4°5
120	874 ^{.9}	879°3	883°8	888.2	892 ⁻ 7	897'1	901°5	905.9	910.4	914'8	4°4
121	8 919 [.] 2	923.6	928.0	932'4	936.8	941'2	945 ^{.6}	949°9	954'3	958.6	4°4
122	963 [.] 0	967.3	971.6	976'0	980.3	984'6	988 ^{.9}	993°2	997'5	*001.8	4°3
123	9 006 [.] 1	010.4	014.7	019'0	023.3	027'6	031 ^{.9}	036°1	040'4	044.6	4°3
124	048 [.] 9	053.1	057.3	061'5	065.7	069'9	074 ^{.1}	078°3	082'5	086.7	4°2
125	090 [.] 9	095.1	099.3	103'5	107.7	111'9	116 ^{.1}	120°2	124'4	128.5	4°1
126	9 132.7	136.8	140 [•] 9	145°1	149°2	153°3	157°4	161.5	165.6	169'7	4'I
127	173.8	177.9	182 [•] 0	186°1	190°2	194°3	198°4	202.4	206.5	210'5	4'I
128	214.6	218.6	222 [•] 7	226°7	230°8	234°8	238°8	242.8	246.9	250'9	4'0
129	254.9	258.9	262 [•] 9	267°0	271°0	275°0	279°0	283.0	286.9	290'9	4'0
130	294.9	298.9	302 [•] 9	306°8	310°8	314°8	318°8	322.7	326.7	330'6	4'0
131	9 334 ^{.6}	33 ⁸ ·5	342.4	346 [.] 4	350°3	354'2	358°1	362°0	365.9	369.8	3°9
132	373 ^{.7}	377·6	381.5	3 ⁸ 5 [.] 4	389°3	393'2	397°1	400'9	404.8	408.6	3°9
133	412 ^{.5}	416·4	420.2	424 [.] 1	427°9	431'8	435°6	439'4	443.3	447.1	3°8
134	450 ^{.9}	454·7	458.5	462 [.] 3	466°1	469'9	473°7	477'5	481.2	485.0	3°8
135	488 ^{.8}	492·6	496.4	500 [.] 1	503°9	507'7	511°4	515'2	518.9	522.7	3°8
136	9 526·4	530'I	533 ^{.8}	537.6	541.3	545.0	548.7	552'4	556°1	559.8	3.7
137	563·5	567'2	570 ^{.9}	574.6	578.3	582.0	585.7	589'3	593°0	596.6	3.7
138	600·3	604'0	607 ^{.6}	611.3	614.9	618.6	622.2	625'9	629°5	633.2	3.7
139	636·8	640'4	644 ^{.0}	647.7	651.3	654.9	658.5	662'1	665°7	669.3	3.6
140	672·9	676'5	680 ^{.1}	683.6	687.2	690.8	694.4	697'9	701°5	705.0	3.6

19-2

XXIII. S_v for Spherical Projectiles (continued).

21	0	I	2	3	4	5	6	7	8	9	Diff.
<i>f.s.</i> 141 142 143 144 145	Feet 9708.6 744.1 779.1 813.8 848.3	Feet 712.2 747.6 782.6 817.3 851.7	Feet 715.7 751.1 786.1 820.7 855.1	Feet 719 [.] 3 754 ^{.6} 789 ^{.5} 824 ^{.2} 858 ^{.5}	Feet 722.8 758.1 793.0 827.6 861.9	Feet 726.4 761 6 796.5 831.1 865.3	Feet 729'9 765'1 800'0 834'5 868'7	Feet 733 ^{.5} 768 ^{.6} 803 ^{.4} 838 ^{.0} 872 ^{.1}	Feet 737.0 772.1 806.9 841.4 875.5	Feet 740 ^{.6} 775 ^{.6} 810 ^{.3} 844 ^{.9} 878 ^{.9}	+ 3.6 3.5 3.5 3.5 3.5 3.4
146 147 148 149 150	9 882:3 916:2 949:7 983:0 10016:0	885.7 919.6 953.0 986.3 019.3	889 [•] 1 922 [•] 9 956 [•] 4 989 [•] 6 022 [•] 6	892·5 926·3 959·7 992·9 025·8	895.9 929.6 963.1 996.2 029.1	899 ^{.3} 933 ^{.0} 966 [.] 4 999 ^{.5} 03 ² 4	902.7 936.3 969.7 *002.8 035.7	906'1 939'7 973'0 *006'1 038'9	909.4 943.0 976.4 *009.4 042.2	912.8 946.4 979.7 *012.7 045.4	3'4 3'4 3'3 3'3 3'3 3'3
151 152 153 154 155	10 04 ^{8.7} 081.1 11 3.3 145.3 177.0	051.9 084.3 116.5 148.5 180.1	055 ^{.2} 087 ^{.6} 119 ^{.7} 151 ^{.7} 183 ^{.3}	058·4 090·8 122·9 154·8 186·4	061.7 094.1 126.1 158.0 189.6	064.9 097.3 129.3 161.2 192.7	068·1 100·5 132·5 164·4 195·8	071.4 103.7 135.7 167.5 199.0	074 ^{.6} 106 ^{.9} 138 ^{.9} 170 ^{.7} 202 ^{.1}	077'9 110'1 142'1 173'8 205'3	3°2 3°2 3°2 3°2 3°1
156 157 158 159 160	10 208·4 239·7 270·7 301·5 332·0	211.5 242.8 273.8 304.6 335.0	214.7 245.9 276.9 307.6 33 ^{8.1}	217.8 249.0 279.9 310.7 341.1	221.0 252.1 283.0 313.7 344.2	224.1 255.2 286.1 316.8 347.2	227·2 258·3 289·2 319·8 350·2	230.3 261.4 292.3 322.9 353.2	233.5 264.5 295.3 325.9 356.3	236.6 267.6 298.4 329.0 359.3	3.1 3.1 3.1 3.1 3.1
161 162 163 164 165	10 362·3 392·4 422·4 452·1 481·6	365·3 395·4 425·4 455·1 484·5	368·3 398·4 428·4 458·0 487·5	371.4 401.4 431.3 461.0 490.4	374 [•] 4 404 [•] 4 434 [•] 3 463 [•] 9 493 [•] 4	377'4 407'4 437'3 466'9 496'3	380.4 410.4 440.3 469.8 499.2	383.4 413.4 443.2 472.8 502.2	386·4 416·4 446·2 475·7 505·1	389.4 419.4 449.1 478.7 508.1	3.0 3.0 3.0 2.9 2.9
166 167 168 169 170	10 511 0 540 1 569 1 597 9 626 5	513.9 543.0 572.0 600 8 629.3	516·8 545·9 574·9 603·6 632·2	519·8 548·8 577·7 606·5 635·0	522.7 551.7 580.6 609.3 637.9	525.6 554.6 583.5 612.2 640.7	528·5 557·5 586·4 615·1 643·5	531.4 560.4 589.3 617.9 646.4	534°3 563°3 592°1 620°8 649°2	537·2 566·2 595·0 623·6 652·1	2.9 2.9 2.9 2.9 2.9 2.8
171 172 173 174 175	10654.9 683.2 711.2 739.3 767.1	657·7 686·0 714·1 742·1 769·9	660.6 688.8 716.9 744.9 772.6	663*4 691*7 719*7 747*6 775*4	666°3 694°5 722°5 750°4 778°1	669 [•] 1 697 [•] 3 725 [•] 3 753 [•] 2 780 [•] 9	671.9 700.1 728.1 756.0 783.7	674·7 702·9 730·9 758·8 786·4	677.6 705.7 733.7 761.5 789.2	680.4 708.5 736.5 764.3 791.9	2.8 2.8 2.8 2.8 2.8 2.8 2.8
176 177 178 179 180	107947 8222 849 876 876 8 903 8	797 ^{.5} 824 ^{.9} 852 ^{.3} 879 ^{.5} 906 ^{.5}	800°2 827°7 855°0 882°2 909°2	803.0 830.4 857.8 884.9 911.9	805.7 833.2 860.5 887.6 914.6	808.5 835.9 863.2 890.3 917.3	811.2 838.6 865.9 893.0 920.0	814.0 841.4 868.6 895.7 922.7	816·7 844·1 871·4 898·4 925·3	819.5 846.9 874.1 901.1 928.0	2.8 2.7 2.7 2.7 2.7 2.7
181 182 183 184 185	10930.7 957.5 984.1 110106 036.9	933 [.] 4 960 [.] 2 986 [.] 8 013 [.] 2 039 [.] 5	936·1 962·8 989·4 015·9 042·1	938.7 965.5 992.1 018.5 044.8	941'4 968'1 994'7 021'2 047'4	944'I 970'8 997'4 023'8 050'0	946·8 973·5 *000·0 026·4 052·6	949 ^{.5} 976 [.] 1 *002 ^{.7} 029 ^{.0} 055 ^{.2}	952'I 978'8 *005'3 031'7 057'9	954.8 981.4 *008.0 034.3 060.5	2°7 2°7 2°7 2°6 2°6
186 187 188 189 190	11 063·1 089·1 114·9 140·6 166·1	065.7 091.7 117.5 143.2 168.6	068·3 094·3 120·1 145·7 171·2	070 ^{.9} 096 ^{.8} 122 ^{.6} 148 [.] 3 173 ^{.7}	073.5 099.4 125.2 150.8 176.3	076·1 102·0 127·8 153·4 178·8	078·7 104·6 130·4 155·9 181·3	081·3 107·2 132·9 158·5 183·9	083.9 109.7 135.5 161.0 186.4	086.5 112.3 138.0 163.6 189.0	2.6 2.6 2.6 2.6 2.5

6 8 v 0 I 2 3 4 5 7 Diff. 9 Feet Feet J.s. Feet Feet Feet +Feet Feet Feet Feet Feet 211.7 2.5 11 191.5 194.0 196.2 199.1 201.6 204'I 206.6 209'1 214'2 191 219.2 221.7 224.2 226.7 229.2 236.7 192 216.7 231.7 234.2 239.2 2.5 2.5 244·2 268·9 256.6 246.7 251.6 254.1 259.0 261.5 263.9 193 241.7 249'1 273.8 266.4 276.3 278.8 288.6 281.3 286.2 194 271.4 283.7 2'5 296.0 298.5 300.9 308.3 29I'I 293.6 303.4 305.9 310.8 313.2 2.5 195 318.1 325.5 320.6 327.9 332.8 2.4 196 11 315.7 323.0 330.3 335.5 337.7 340.1 349.8 352.2 354.6 361.9 342.5 344.9 347.4 357.0 359.5 2'4 197 364·3 388·3 376.3 385.9 198 366.7 369.1 381.1 2.4 371.2 373.9 378.7 383.2 397.9 402.7 405°1 428°8 199 390.7 393.1 395 5 400'3 407.4 409.8 2.4 200 412.2 414.6 417.0 419.3 421.7 424'1 426.5 431.2 433'5 2.4 11 435°9 459°6 483°1 438.3 443^{.0} 466^{.6} 445.4 447.8 450.2 452.5 454°9 478'4 457.2 2'4 201 440.7 476.0 480.7 461.9 464°3 487°8 469.0 471°3 494°8 473.7 2.3 202 485.4 508.7 501.8 490'1 492.5 497'1 499.4 504.1 2.3 203 515·7 538·9 525°0 548°2 506.4 511.0 513.4 536.6 518.0 522.6 527.3 2'3 520.3 204 2:3 529.6 531.9 534.2 541.2 543.5 545.8 550.2 205 555°1 578°1 562.0 566.6 568.9 557°4 580°4 559°7 582°6 564.3 571.2 573.5 2'3 206 11 552.8 575·8 598·7 591.8 596.4 2.3 584.9 587.2 589.5 594'1 207 612.4 607.8 610.1 614.7 616.0 619.2 2.3 601.0 603.3 605.2 208 2'3 626.1 628.3 642.0 630.6 632.9 635.2 637.5 639.7 621.2 623.8 209 664.6 2'3 660'1 662.4 644.3 646.6 648.8 651.1 653.3 655.6 657.9 210 67**5**.9 698.5 687.2 680.5 682.7 685.0 2.3 11 666.0 669'2 671.4 673.7 678.2 211 707.5 2'2 689.5 691.7 7030 705.2 709.7 212 694.0 696.2 700.7 727.7 2'2 729.9 732.2 213 712.0 714.2 716.5 718.7 721.0 723.2 725.4 736.6 738.8 747.7 7500 752.2 754°5 776°8 2.2 741.1 743'3 745°5 767°8 214 734'4 765.6 772.3 774'5 2'2 758.9 761.1 763.4 770.0 756.7 215 785·7 807·8 796.8 787.9 799.0 781.2 783.4 790^{.1} 812^{.2} 792.3 794°5 816°6 2'2 11779°0 801°2 216 818.8 821.0 2.2 805.6 810.0 814.4 803.4 217 838.6 218 836.4 840.8 843.0 2.2 825.4 827.6 829.8 832.0 834.2 823.5 865.0 854.0 856.2 858.4 860.0 862.8 2.2 845.2 219 847.4 849**.**6 851.8 878.1 880.3 882.5 884.6 886.8 2.2 875.9 867.2 869.4 871.6 873.7 220 906.4 908.5 2.2 897.7 899.9 902'I 904.2 11889.0 221 891.2 893.4 895.5 928.1 2.2 921.6 926.0 930.3 923.8 912.9 915.1 917.2 919.4 222 910.7 2.2 936.8 941.1 949.8 951.9 945°5 967°0 947.6 939.0 943.3 223 932.2 934.7 971.3 2.2 969.2 973.5 954.1 956.3 958.4 960.6 962.7 964.9 224 992.8 994.9 986.3 988.5 2'1 990.6 982.0 984.2 225 975.6 977.7 979.9 *016.4 *014'2 2'1 *012.1 *003.5 *005.7 *007.8 *009.9 226 11 997'1 999'2 *001'4 2'1 027.0 048.3 029'1 035.5 037.7 031.5 033.4 12018.5 020.6 022.7 024'9 227 058.9 2'I 046.2 052.5 054.6 228 039.8 041.9 044.0 050.4 075.8 0800 2'I 077.9 069°5 090°6 .071.6 061.0 063 1 065.2 067.4 073.7 229 101.3 2'I 094.8 096.9 099.1 082'1 084.2 086.3 088.5 092.7 230

XXIII. S_v for Spherical Projectiles (continued).

XXIV. T_v for Spherical Projectiles. (w = 534.22 grams).

v	0	I	2	3	4	5	6	7	8	9	Diff.
<i>f. s.</i>	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	+
40	4 [•] 227	4 [.] 280	4*333	4'3 ⁸ 5	4.437	4'488	4.540	4*591	4.642	4.693	52
41	4 [•] 743	4 [.] 793	4*843	4' ⁸ 93	4.942	4'991	5.040	5*089	5.138	5.186	49
42	5 [•] 234	5 [.] 282	5*330	5'377	5.424	5'471	5.517	5*564	5.610	5.656	47
43	5 [•] 702	5 [.] 747	5*793	5' ⁸ 38	5.883	5'928	5.972	6*017	6.061	6.105	45
44	6 [•] 149	6 [.] 192	6*236	6'279	6.322	6'365	6.407	6*450	6.492	6.534	43
45	6 [•] 576	6 [.] 618	6*659	6'701	6.742	6'783	6.824	6*864	6.905	6.945	41
46	6.985	7:025	7.064	7.104	7·143	7.182	7·221	7.260	7·298	7:337	39
47	7.375	7:413	7.451	7.489	7·527	7.565	7·602	7.640	7·677	7:714	38
48	7.751	7:787	7.824	7.860	7 896	7.932	7·968	8.004	8·039	8:075	36
49	8.110	8:145	8.180	8.215	8·250	8.284	8·319	8.353	8·387	8:421	35
50	8.455	8:489	8.522	8.556	8·589	8.622	8·655	8.688	8·721	8:754	34
51	8·786	8.819	8.851	8.883	8·915	8·947	8.978	9.010	9.042	9.073	32
52	9·105	9.136	9.167	9.198	9·229	9·260	9.291	9.321	9.352	9.382	31
53	9·412	9.442	9.472	9.502	9·532	9·561	9.591	9.620	9.649	9.678	30
54	9·707	9.736	9.765	9.794	9·823	9 851	9.880	9.908	9.936	9.964	29
55	9·992	*0.020	*0.048	*0.076	*0·104	*0·131	*0.159	*0.186	*0.213	*0.240	28
56	1.032	0 ^{.294}	0°321	0'348	0·375	0'401	0.428	0 [.] 454	0.480	0.506	27
57		0 ^{.558}	0°584	0'610	0·636	0'661	0.687	0 [.] 712	0.738	0.763	26
58		0 ^{.813}	0°838	0'862	0·887	0'912	0.937	0 [.] 961	0.986	1.010	25
59		1 ^{.059}	1°083	1'107	1·131	1'155	1.179	1 [.] 202	1.226	1.249	24
60		1 ^{.296}	1°320	1'343	1·367	1'390	1.413	1 [.] 436	1.459	1.482	23
61	1.944	1.527	1.550	1.572	1.595	1.617	1.639	1.661	1.684	1.706	22
62		1.750	1.772	1.793	1.815	1.837	1.858	1.880	1.901	1.923	22
63		1.965	1.986	2.008	2.029	2.050	2.071	2.092	2.112	2.133	21
64		2.174	2.195	2.215	2.236	2.256	2.276	2.296	2.317	2.337	20
65		2.377	2.397	2.417	2.436	2.456	2.476	2.495	2.515	2.534	20
66 67 68 69 70	2.746 2.931 3.111	2·573 2·765 2·949 3·129 3·303	2·593 2·783 2·967 3·146 3·320	2.612 2.802 2.986 3.164 3.338	2.632 2.820 3.004 3.181 3.355	2.651 2.839 3.022 3.199 3.372	2.670 2.857 3.040 3.216 3.389	2.689 2.876 3.058 3.234 3.406	2.708 2.894 3.075 3.251 3.422	2.727 2.913 3.093 3.269 3.439	19 19 18 18 18
7 I	1 3.456	3.473	3.490	3.506	3.523	3.540	3.556	3·573	3.589	3.606	17
72	3.622	3.638	3.654	3.670	3.686	3.702	3.718	3·734	3.750	3.766	16
73	3.782	3.798	3.814	3.829	3.845	3.861	3.877	3·892	3.908	3.923	16
74	3.939	3.954	3.970	3.985	4.001	4.016	4.031	4·046	4.062	4.077	15
75	4.092	4.107	4.122	4.137	4.152	4.167	4.182	4·196	4.211	4.225	15
76	1 4.240	4 ^{.254}	4.269	4 ^{•28} 3	4 ^{•298}	4.312	4·326	4·341	4.355	4 [.] 370	14
77	4.384	4 ^{.398}	4.412	4 ^{•427}	4 ^{•441}	4.455	4·469	4·483	4.497	4 [.] 511	14
78	4.525	4 ^{.539}	4.553	4 ^{•567}	4 ^{•581}	4.595	4·609	4·622	4.636	4 [.] 649	14
79	4.663	4 ^{.676}	4.690	4 ^{•703}	4 ^{•717}	4.730	4·743	4·756	4.770	4 [.] 783	13
80	4.796	4 ^{.809}	4.822	4 ^{•8} 35	4 ^{•848}	4.861	4·874	4·887	4.900	4 [.] 913	13
81 82 83 84 85	5.178	4'939 5'066 5'190 5'312 5'428	4.952 5.079 5.202 5.324 5.440	4.964 5.091 5.215 5.335 5.451	4 [.] 977 5 [.] 104 5 [.] 227 5 [.] 347 5 [.] 463	4.990 5.116 5.239 5.359 5.474	5.003 5.128 5.251 5.371 5.485	5.016 5.141 5.263 5.382 5.496	5.028 5.153 5.276 5.394 5.508	5.041 5.166 5.288 5.405 5.519	13 12 12 12 12 11

XXIV. T_v for Spherical Projectiles (continued).

1											
21	0	I	2	3	4	5	6	7	8	9	Diff.
<i>f. s.</i> 86 87 88 89 90	Seconds 1 5:530 5:640 5:746 5:849 5:948	Seconds 5.541 5.651 5.756 5.859 5.958	Seconds 5.552 5.662 5.767 5.869 5.967	Seconds 5.564 5.672 5.777 5.879 5.977	Seconds 5.575 5.683 5.788 5.889 5.986	Seconds 5.586 5.694 5.798 5.899 5.996	Seconds 5.597 5.704 5.808 5.909 6.006	Seconds 5.608 5.715 5.818 5.919 6.015	Seconds 5.618 5.725 5.829 5.928 6.025	Seconds 5.629 5.736 5.839 5.938 6.034	+ 11 10 10 10
91	1 6.044	6.053	6.063	6.072	6.082	6.091	6·100	6.109	6.119	6.128	9
92	6.137	6.146	6.155	6.164	6.173	6.182	6·191	6.200	6.208	6.217	9
93	6.226	6.235	6.244	6.252	6.261	6.270	6·279	6.287	6.296	6.304	9
94	6.313	6.321	6.330	6.338	6.347	6.355	6·363	6.372	6.380	6.389	8
95	6.397	6.405	6.413	6.422	6.430	6.438	6·446	6.454	6.463	6.471	8
96 97 98 99 100	1 6·479 6·558 6·634 6·708 6·780	6.487 6.566 6.642 6.715 6.787	6.495 6.573 6.649 6.722 6.794	6.203 6.281 6.627 6.730 6.801	6.511 6.588 6.664 6.737 6.808	6.519 6.596 6.672 6.744 6.815	6.527 6.604 6.679 6.751 6.822	6.535 6.611 6.686 6.758 6.829	6.542 6.619 6.694 6.766 6.835	6.550 6.626 6.701 6.773 6.842	8 8 7 7 7 7
101	16.8491	8559	8627	8694	8761	8828	8895	8961	9027	9093	67
102	9158	9223	9288	9353	9417	9482	9546	9610	9673	9737	64
103	9800	9862	9925	9987	*0049	*0111	*0172	*0233	*0294	*0355	62
104	17.0416	0476	0536	0595	0655	0714	0773	0832	0890	0948	5 9
105	1006	1064	1121	1179	1236	1293	1350	1406	1463	1519	57
106	17. 1575	1630	1686	1741	1796	1851	1905	1960	2014	2068	55
107	2122	2176	2229	2283	2336	2389	2442	2495	2547	2600	53
108	2652	2704	2756	2807	2859	2910	2961	3012	3062	3113	51
109	3163	3213	3263	3313	3363	3413	3462	3512	3561	3610	50
110	3659	3708	3756	3805	3 ⁸ 53	3901	3949	3997	4044	4092	48
111	17° 4139	4186	4233	4280	4326	4373	4419	4466	4512	4558	47
112	4604	4650	4696	4741	4787	4832	4 ⁸ 77	4922	4967	5012	45
113	5057	5101	5145	5190	5234	5278	5322	5366	54 9	5453	44
114	5497	5540	5583	5626	5669	5712	5755	5797	5840	5882	43
115	5925	5967	6009	6050	6092	6134	6175	6216	6258	6299	42
116	17.6340	6381	6422	6462	6503	6544	6584	6625	6665	6706	41
117	6746	6786	6826	6865	6905	6945	6984	7023	7063	7102	40
118	7141	7180	7219	7257	7296	7335	7373	7412	7450	7489	39
119	7527	7565	7603	7640	7678	7716	7753	7791	7828	7866	38
120	7903	7940	7977	8014	8051	8088	8125	8161	8198	8234	37
121	17 [.] 8271	8307	8343	8380	8416	8452	8488	8524	8559	8595	36
122	8631	8666	8702	8737	8773	8808	8843	8878	8913	8948	35
123	8983	9018	9053	9087	9122	9157	9191	9226	9260	9295	35
124	9329	9363	9397	9431	9465	9499	9533	9566	9600	9633	34
125	9667	9700	9734	9767	9801	9834	9867	9900	9933	9966	33
126	17 [.] 9999	*0032	*0065	*0097	*0130	*0163	*0195	*0228	*0260	*0293	33
127	18 [.] 0325	0357	0389	0422	0454	0486	0518	0550	0581	0613	32
128	0645	0677	0708	0740	0771	0803	0834	0865	0897	0928	31
129	0959	0990	1021	1052	1083	1114	1145	1176	1206	1237	31
130	1268	1298	1329	1359	1390	1420	1450	1480	1511	1541	30
131	18 [.] 1571	1601	1631	1661	1691	1721	1751	1780	1810	1839	30
132	1869	1898	1928	1957	1987	2016	2045	2074	2104	2133	29
133	2162	2191	2220	2248	2277	2306	2335	2363	2392	2420	29
134	2449	2477	2506	2534	2563	2591	2619	2647	2676	2704	28
135	2732	2760	2788	2815	2843	2871	2899	2926	2954	2981	28

XXIV. T_v for Spherical Projectiles (continued).

	1										
v	0	I	2	3	4	5	6	7	8	9	Diff.
<i>f. s.</i>	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	+
136	18 [.] 3009	3036	3063	3091	3118	3145	3172	3199	3227	3254	27
137	3281	3308	3335	3361	3388	3415	3442	3469	3495	3522	27
138	3549	3575	3602	3628	3655	3681	3707	3733	3760	3786	26
139	3812	3838	3864	3890	3916	3942	3968	3994	4019	4045	26
140	4071	4096	4122	4147	4173	4198	4223	4249	4274	4300	25
141 142 143 144 145	18·4325 4575 4820 5063 5301	4350 4600 4844 5087 5325	4375 4624 4869 5111 5348	4400 4649 4893 5135 5372	4425 4673 4918 5159 5395	4450 4698 4942 5183 5419	4475 4722 4966 5207 5442	4500 4747 4990 5230 5466	4525 4771 5015 5254 5489	4550 4796 5039 5277 5513	25 25 24 24 24 24
146 147 148 149 150	18·5536 5767 5994 6218 6439	5559 5790 6016 6240 6461	5582 5813 6039 6262 6483	5606 5835 6061 6285 6504	5629 5858 6084 6307 6526	5652 5881 6106 6329 6548	5675 5904 6128 6351 6570	5698 5926 6151 6373 6591	5721 5949 6173 6395 6613	5744 5971 6196 6417 6634	23 23 22 22 22 22
151 152 153 154 155	18.6656 6870 7081 7289 7494	6677 6891 7102 7310 7514	6699 6912 7123 7330 7535	6720 6934 7144 7351 7555	6742 6955 7165 7371 7576	6763 6976 7186 7392 7596	6784 6997 7207 7412 7616	6806 7018 7227 7432 7636	6827 7039 7248 7453 7657	6849 7060 7268 7474 7677	2 I 2 I 2 I 2 I 2 I 2 O
156	18° 7697	7717	7737	7757	7777	7797	7817	7837	7856	7876	20
157	7896	7916	7936	7955	7975	7995	8015	8034	8054	8073	20
158	8093	8113	8132	8152	8171	8191	8210	8230	8249	8269	20
159	8288	8307	8326	8346	8365	8384	8403	8422	8441	8460	19
160	8479	8498	8517	8536	8555	8574	8593	8612	8630	8649	19
161	18.8668	8687	8705	8724	8742	8761	8780	8798	8817	8835	19
162	8854	8873	8891	8910	8928	8947	8965	8984	9002	9021	19
163	9039	9057	9075	9094	9112	9130	9148	9166	9184	9202	18
164	9220	9238	9256	9274	9292	9310	9328	9346	9364	9382	18
165	9400	9418	9436	9453	9471	9489	9507	9524	9542	9559	18
166	18 [.] 9577	9595	9612	9630	9647	9665	9682	9700	9717	9735	18
167	9752	9769	9787	9804	9822	9839	9856	9873	9891	9908	17
168	9925	9942	9959	9977	9994	*0011	*0028	*0045	*0062	*0079	17
169	19 [.] 0096	0113	0130	0147	0164	0181	0198	0215	0231	0248	17
170	0265	0282	0298	0315	0331	0348	0365	0381	0398	0414	17
171	19°0431	0448	0464	0481	0497	0514	0530	0547	0563	0580	17
172	0596	0612	0629	0645	0662	0678	0694	0710	0727	0743	16
173	0759	0775	0791	0808	0824	0840	0856	0872	0888	0904	16
174	0920	0936	0952	0968	0984	1000	1016	1032	1048	1064	16
175	1080	1096	1112	1127	1143	1159	1175	1190	1206	1221	16
176	19 [•] 1237	1253	1268	1284	1299	1315	1331	1346	1362	1377	16
177	1393	1408	1424	1439	1455	1470	1485	1501	1516	1532	15
178	1547	1562	1577	1593	1608	1623	1638	1653	1669	1684	15
179	1699	1714	1729	1745	1760	1775	1790	1805	1820	1835	15
180	1850	1865	1880	1895	1910	1925	1940	1955	1969	1984	15
181	19 [.] 1999	2014	2029	2043	2058	2073	2088	2103	2117	2132	15
182	2147	2162	2176	2191	2205	2220	2235	2249	2264	2278	15
183	2293	2307	2322	2336	2351	2365	2379	2394	2408	2423	14
184	2437	2451	2466	2480	2495	2509	2523	2537	2552	2566	14
185	2580	2594	2608	2622	2636	2650	2664	2678	2693	2707	14

XXIV. T_v for Spherical Projectiles (continued).

v	0	ſ	2	3	4	5	6	7	8	9	Diff.
f. s.	Seconds	Seconds			Seconds	Seconds	Seconds		Seconds	Seconds	+
186	19.2721	2735	2749	2763	2777	2791	2805	2819	2832	2846	14
187	2860	2874	2888	2901	2915	2929	2943	2957	2970	2984	14
188	2998	3012	3025	3039	3052	3066	3080	3093	3107	3120	14
189	3134	3148	3161	3175	3188	3202	3215	3229	3242	3256	14
190	3269	3282	3296	3309	3323	3336	3349	3362	3376	3389	13
191	19.3402	3415	3428	3442	3455 3586	3468	3481	3494	3508	3521	13
192	3534	3547	3560	3573	3586	3599	3612	3625	3638	3651	13
193	3664	3677	3690	3702	3715	3728	3741	3754	3766	3779	13
194	3792	3805	3817	3830	3842	3855	3868	3880	3893	3905	13
195	3918	3931	3943	3956	3968	3981	3994	4006	4019	4031	13
196	19.4044	4056	4068	4081	4094	4106	4118	4131	4143	4156	12
197	4168	4180	4192	4205	4217	4229	4:41	4253	4266	4278	12
198	4290	4302	4314	4327	4339	4351	4363	4375	4388	4400	12
199	4412	4424	4436	4448	4460	4472	4484	4496	4508	4520	12
200	4532	4544	4556	4567	4579	4591	4603	4615	4626	4638	12
201	19.4650	4662	4674	4685	4697	4709	4721	4732	4744	4755	12
202	4767	4779	4790	4802	4813	4825	4837	4848	4860	4871	12
203	4883	4895	4906	4918	4929	494I	4952	4964	4975	4987	12
204	4998	5009	5021	5032	5044	5055	5066	5078	5089	5101	II
205	5112	5123	5134	5146	5157	5168	5179	5190	5202	5213	11
206	19. 5224	5235	5246	5258	5269	5280	5291	5302	5314	5325	11
207	5336	5347	5358	5369	5380	5391	5402	5413	5424	5435	11
208	5446	5457	5468	5479	5490	5501	5512	5523	5534	5545	II
209	5556	5567	5578	5588	5599	5610	5621	5632	5642	5653	11
210	5664	5675	5686	5696	5707	5718	5729	5740	5750	5761	11
211	19. 5772	5783	5793	5804	5814	5825	5836	5846	5857	5867	11
212	5878	5889	5899	5910	5920	5931	5942	5952	5963	5973	II
213	5984	5995	6005	6016	6026	6037	6047	6058	6068	6079	11
214	6089	6099	6110	6120	6131	6141	6151	6162	6172	6183	10
215	6193	6203	6214	6224	6235	6245	6255	6266	6276	6287	10
216	19.6297	6307	6317	6328	6338	6348	6358	6368	6379	6389	10
217	6399	6409	6419	6430	6440	6450	6460	6470	6481	6491	10
218	6501	6511	6521	6531	6541	6551	6561	6571	6581	6591	10
219	6601	6611	6621	6631	6641	6651	6661	6671	6681	6691	10
220	6701	6711	6721	6731	6741	6751	6761	6771	6781	6791	10
221	19. 6801	6811	6821	6830	6840	6850	6860	6869	6879	6888	10
222	6898	6908	6918	6927	6937	6947	6957	6967	6976	6986	10
223	6996	7006	7016	7025	7035	7045	7055	7064	7074	7083	10
224	7093	7103	7112	7122	7131	7141	7151	7160	7170	7179	10
225	7189	7198	7208	7217	7227	7236	7246	7255	7265	7274	9
226	19.7284	7293	7303	7312	7322	7331	7340	7350	7359	7369	9
227	7378	7387	7397	7406	7416	7425	7434	7444	7453	7463	9
228	7472	7481	7491	7500	7510	7519	7528	7537	7547	7556	9
229	7565	7574	7583	7593	7602	7611	7620	7629	7639	7648	9
	1 1505	1.214	1.2.2	1.000	1	1	1	1	1	1	1

XXV. S_v for Ogival-headed Projectiles. (w = 534.22 grains.)

		-							•••	<u> </u>	·
υ	0	I	2	3	4	5	6	7	8	9	Diff.
f.s.	Feet	Feet	Feet	Feet	Feet	Feet	Feet	Feet	Feet	Feet	+
10	935	1099	1262	1423	1583	1741	1898	2053	2207	2359	158
11	2510	2660	2808	2955	3101	3245	3388	3530	3671	3811	145
12	3949	4086	4222	4357	4491	4624	4756	4886	5016	5144	133
13	5272	5399	5525	5649	5773	5896	6018	6139	6259	6378	123
14	6497	6614	6731	6847	6962	7077	7190	7303	7415	7526	114
15	7637	7747	7856	7964	8072	8179	8285	8391	8496	8600	107
16	8704	8807	8910	9012	9113	9213	9313	9412	9511	9609	101
17	9706	9803	9900	9996	*0091	*0185	*0279	*0373	*0466	*0559	95
18	1 0651	0742	0833	0924	1014	1104	1193	1281	1369	1457	90
19	1 1544	1631	1717	1803	1888	1973	2058	2142	2226	2309	85
20	2392	2474	2556	2638	2719	2800	2881	2961	3041	3120	81
21	3199	3278	3356	3434	3511	3588	3665	3741	3817	3892	77
22	1 3967	4042	4117	419 1	4265	433 ⁸	4411	4484	4557	4630	74
23	4702	4774	4845	4916	4987	5058	5128	5198	5268	5337	71
24	5406	5475	5544	5612	5680	5747	5814	5881	5948	6014	68
25	1 6080	6146	6212	6277	6342	6407	6472	6537	6601	6665	65
26	6729	6793	6856	6919	6982	7044	7106	7168	7230	7291	62
27	7352	7413	7474	753 5	7595	7655	7715	7775	7835	7895	60
28	1 7954	8013	8072	8131	8189	8247	8305	8363	8420	8477	58
29	8534	8591	8648	8704	8760	8816	8872	8928	8984	9039	56
30	9094	9149	9204	9259	9313	9367	9421	9475	9529	9583	54
31	1 9636	9689	9742	9795	9848	9901	9953	*0005	*0057	*0109	53
32	2 0161	0213	0264	0315	0366	0417	0468	0519	0569	0619	51
33	0669	0719	0769	0819	0869	0918	0967	1016	1065	1114	50
34	2 1 1 6 3	1212	1260	1 308	1 356	1404	1452	1500	1548	1595	48
35	1 6 4 2	1689	1736	1 783	1830	1876	1923	1969	2015	2061	47
36	2 1 0 7	2153	2199	2245	2290	2335	2380	2425	2470	2515	45
37	2 2560	2605	2650	2694	2738	2782	2826	2870	2914	2958	44
38	3001	3045	3088	3131	3174	3217	3260	3303	3346	3388	43
39	3430	3473	3515	3557	3599	3641	3683	3725	3767	3808	42
40	2 3849	3890	3931.	3972	4013	4054	4095	4136	4177	4217	41
41	4257	4297	4337	4377	4417	4457	4497	4537	4577	4616	40
42	4655	4695	4734	4773	4812	4851	4890	4929	4968	5006	39
43	2 5044	5083	5121	5159	5197	5235	5273	5311	5349	53 ⁸ 7	38
44	5424	5462	5499	5537	5574	5611	5648	5685	5722	5759	37
45	5796	5833	5869	5906	5942	5979	6015	6051	6087	6123	36
46	2 61 59	6195	6230	6266	6301	6337	6372	6408	6443	6479	36
47	6514	6549	6584	6618	6653	6688	6723	6758	6792	6827	35
48	6862	6896	6930	6965	6999	7033	7067	7101	7135	7169	34
49	2 7203	7237	7270	7304	7337	7371	7404	7437	7471	7504	33
50	7537	7570	7603	7635	7668	7701	7734	7766	7799	7831	33
51	7864	7896	7928	7961	7993	8025	8057	So89	8121	8153	32
52	2 8185	8217	8248	8280	8311	8343	8374	8406	8437	8469	32
53	8500	8531	8562	8593	8624	8655	8686	8717	8747	8778	31
54	8809	8839	8870	8900	8931	8961	8991	9021	9052	9082	30
55	2 9112	9142	9172	9202	9232	9262	9292	9321	9351	9380	30
56	9410	9439	9469	9498	9528	9557	9586	9615	9645	9674	29
57	9703	9732	9761	9789	9818	9847	9876	9904	9933	9961	29

XXV. Sv for Ogival-headed Projectiles (continued).

v	0	I	2	3	4	5	6	7	8	9	Diff.
<i>f. s.</i>	Feet	Feet	Feet	Feet	Feet	Feet	Feet	Feet	Feet	Feet	+
58	2 9990	*0018	*0047	*0075	*0104	*0132	*0160	*0188	*0217	*0245	28
59	3 0273	0301	0329	0357	0385	0413	0441	0468	0496	0523	28
60	0551	0578	0606	0633	0661	0688	0715	0742	0770	0797	27
61	3 0824	0851	0878	0905	0932	0959	0986	1013	1039	1066	27
62	1093	1120	1146	1173	1199	1226	1252	1278	1305	1331	26
63	1357	1383	1409	1436	1462	1488	1514	1540	1566	1592	26
64	3 1618	1644	1670	1695	1721	1747	1772	1798	1823	1849	26
65	1874	1899	1925	1950	1976	2001	2026	2051	2076	2101	25
66	2126	2151	2176	2201	2226	2251	2276	2301	2325	2350	25
67	3 2375	2400	2424	2449	2473	2498	2522	2547	2571	2596	25
68	2620	2644	2668	2693	2717	2741	2765	2789	2813	2837	24
69	2861	2885	2909	2932	2956	2980	3004	3028	3051	3075	24
70	3 3099	3123	3146	3170	3193	3217	3240	3263	3287	3310	23
71	3333	3356	3379	3403	3426	3449	3472	3495	3518	3541	23
72	3564	35 ⁸ 7	3610	3632	3655	3678	3701	3724	3746	3769	23
73	3 3792	3815	3837	3860	3882	3905	3927	3950	3972	3995	23
74	4017	4039	4061	4084	4106	4128	4150	4172	4195	4217	22
75	4239	4261	4283	4305	4327	4349	4371	4393	4414	4436	22
76	3 4458	4480	4501	4523	4544	4566	4588	4609	4631	4652	22
77	4674	4695	4717	4738	4760	4781	4802	4823	4845	4866	21
78	4887	4908	4929	4951	4972	4993	5014	5035	5056	5077	21
79	3 5098	5119	5140	5161	5182	5202	5223	5244	5265	5285	21
80	5306	5327	5347	5368	5389	5409	5430	5450	5471	5491	20
81	5512	5532	5552	5573	5593	5613	5634	5654	5674	5694	20
82	3 5714	5734	5754	5775	5795	5815	5834	5854	5874	5894	20
83	5914	5933	5953	5973	5992	6012	6031	6051	6070	6089	19
84	6109	6128	6147	6166	6185	6204	6223	6242	6261	6280	19
85	3 6299	6318	6336	6355	6374	6393	6411	6430	6448	6467	19
86	6485	6503	6522	6540	6558	6576	6594	6612	6630	6648	18
87	6666	6684	6702	6720	6738	6756	6773	6791	6809	6826	18
88	3 6844	6861	6879	6896	6914	6931	6948	6966	6983	7000	17
89	7017	7034	7052	7069	7086	7103	7120	7136	7153	7170	17
90	7187	7204	7220	7237	7254	7271	7287	7303	7320	7336	17
91	3 7353	7369	7386	7402	7418	7435	7451	7467	7483	7499	16
92	7515	7531	7547	7563	7579	7595	7611	7627	7643	7658	16
93	7674	7690	7705	7721	7737	7752	7768	7783	7798	7814	16
94	3 7829	7845	7860	7875	7891	7906	7921	7936	7951	7966	15
95	7982	7997	8012	8027	8042	8057	8071	8086	8101	8116	15
96	8131	8145	8160	8175	8189	8204	8218	8233	8247	8262	15
97	3 8277	8291	8305	8320	8334	8348	8363	8377	8391	8405	I4
98	8419	8433	8448	8462	8476	8490	8504	8518	8532	8546	I4
99	8560	8573	8587	8601	8615	8628	8642	8656	8669	8683	I4
100	3 8697	8710	8724	8737	8751	8764	8778	8791	8804	8818	13
101	8831	8844	8857	8871	8884	8897	8910	8923	8936	8949	13
102	8962	- 8975	8988	9000	9013	9026	9038	9051	9063	9076	13
103	3 9088	9100	9113	9125	9137	9149	9161	9172	9184	9196	12
104	9207	9219	9230	9241	9252	9263	9274	9285	9295	9306	11
105	9317	9327	9337	9347	9357	9367	9377	9387	9396	9406	10

XXV. S_v for Ogival-headed Projectiles (continued).

											-
υ	0	I	2	3	4	5	6	7	8	9	Diff.
<i>f.s.</i>	Feet	Feet	Feet	Feet	Feet	Feet	Feet	Feet	Feet	Feet	+
106	39 41 5 7	425.0	434°2	443 ^{.5}	452'7	462.0	471'0	479'9	488.9	497.8	9'1
107	506 8	515.5	524°3	533 ^{.0}	541'8	550.5	559'0	567'5	576.0	584.5	8'6
108	593 0	601.2	609°5	617 ^{.7}	626'0	634.3	642'4	650'5	658.6	666.7	8'2
109	39 674·8	682·8	690'7	698 ·6	706°5	714'4	722 [.] 2	7 30 [.] 0	7 37 • 8	745 ^{.6}	7 [.] 9
110	753·4	761·1	768'8	776 ·5	784°2	791'9	799 [.] 5	807 [.] 1	81 4 • 6	822 ^{.2}	7 [.] 6
111	829·7	837·1	844'5	851·9	859°3	866'8	874 [.] 1	881.4	888 • 8	896 ^{.1}	7 [.] 4
112	39 903 ·5	910.7	918.0	925°2	932°5	939 [.] 8	946 [.] 9	954°1	961·3	968 ·5	7°2
113	975·7	982.8	989.9	997°0	*004°1	*011 [.] 2	*018 [.] 2	*025°2	*032·3	*039·3	7°1
114	40 046 · 4	053.4	060.4	067°4	074°4	081.4	088 [.] 3	095°2	102·2	109·1	7°0
115	40 1 16·1	122.9	129 [.] 8	136.6	143.5	150°4	157°2	164°0	170 [.] 8	177 ^{.6}	6.8
116	184·4	191.1	197 [.] 9	204.6	211.4	218°2	224°9	231°6	23 ^{8.} 3	245 ^{.0}	6.7
117	251·7	258.3	265 [.] 0	271.6	278.2	284°9	291°5	298°0	304 [.] 6	311 ^{.2}	6.6
118	40 317.8	324°3	330 [.] 8	337°3	343 ^{.9}	350 [.] 4	356 [.] 8	363 [.] 3	369 [.] 8	376·2	6·5
119	382.7	389°1	395 [.] 5	401°9	408 [.] 4	414 [.] 8	421 [.] 1	427 [.] 5	433 [.] 9	440·2	6·4
120	446.6	452°9	459 [.] 2	465°5	471 ^{.9}	478 [.] 2	4 ⁸ 4 [.] 4	490 [.] 7	497 [.] 0	503·2	6·3
121 122 123	40 509·5 571·3 632·1	515.7 577.4 638.1	521.9 583.5 644.1	528·1 589·6 650·1	534°3 595'7 656'1	540°5 601°8 662°1	546•6 607•8 668•0	552·8 613·9 674·0	559°0 620°0 680°0	565°1 626°0 685°9	6.0 6.1
124	40 691 •9	697.8	703.7	709 [.] 6	715.6	721 ·5	727·3	733 ^{.2}	739 *1	744 [.] 9	5 °9
125	7 50 • 8	756.6	762.4	768 [.] 2	774.0	779·8	7 ⁸ 5·5	791 ^{.3}	797*1	802 [.] 8	5 °8
126	808 • 6	814.3	820.1	825 [.] 8	831.5	837·3	843·0	848 ^{.7}	854*4	860 [.] 1	5 °7
127	40 865.8	871 . 4	877.0	882.6	888·3	893 [.] 9	899 ·5	905°1	910'7	916·3	5°6
128	921.9	927.4	933.0	938.5	944·0	949 [.] 6	955·1	960°6	966'1	971·6	5°5
129	977.1	982.5	988.0	993.5	998·9	*004 [.] 4	*009·8	*015°2	*020'6	*026·1	5°4
130	41 031·5	036·9	042°3	047.7	053 · 1	058·5	063 [.] 8	069°2	074 ^{.6}	079 [.] 9	5°4
131	085·3	090·6	095°9	101.2	106·6	111·9	117 [.] 2	122°5	127 ^{.8}	133 [.] 1	5°3
132	138 4	143·6	148°9	154.2	159·4	164·7	169 [.] 9	175°1	180 [.] 3	185 [.] 6	5°2
1 3 3	41 190·8	196°0	201°2	206.4	211.6	216·8	221.9	227°1	232·3	237 [•] 4	5*2
1 3 4	242·6	247°7	252°9	258.0	263.1	268·3	273.4	278°5	283·6	288 [•] 8	5*1
1 3 5	293·9	298°9	304°0	309.1	314.1	319·2	324.2	329°3	334·4	339 [•] 4	5*1
136	41 344 ^{.5}	349'5	354 ^{.6}	359·6	364 [.] 6	369 [.] 7	374 ^{.7}	379 [.] 7	384.7	3 ⁸ 9·7	5 0
137	394 ^{.7}	399'7	404 ^{.6}	409·6	414 [.] 6	419 [.] 6	424 ^{.5}	429 [.] 5	434.5	439·4	5 0
138	444 [.] 4	449'3	454 ^{.2}	459·1	464 [.] 1	469 [.] 0	473 ^{.9}	47 ^{8.} 8	483.7	488·6	4 9
139	41 493°5	49 ^{8•} 4	503.2	508·1	513.0	517.9	522.7	527 ^{.6}	532°5	537°3	4'9
140	542°2	547 [•] 0	551.9	556·7	561.5	506.4	571.2	576 ^{.0}	580°8	585°7	4'8
141	590°5	595 [•] 3	600.1	604·9	609.7	614.5	619.3	624 ^{.0}	628°8	633°6	4'8
142	41 638·4	643·1	647 [.] 9	652·6	657·3	662·1	666·8	671.6	676·3	681.0	4°7
143	685·8	690·5	695 [.] 2	699·9	704·7	709·4	714·1	718.8	723·5	728.2	4°7
144	732·9	737·6	742 [.] 2	746·9	751·6	756·3	760·9	765.6	770·3	774.9	4°7
145	41 779 ^{.6}	784·2	788.9	793 [.] 6	798·2	802.9	807.5	812 ^{.2}	816·8	821.4	4.6
146	826 ^{.1}	830·7	835.3	839 [.] 9	844·6	849.2	853.8	858 [.] 4	863·0	867.6	4.6
147	872 ^{.2}	876·8	881.4	886 [.] 0	890·6	895.2	899.8	904 [.] 4	90S·9	913.5	4.6
148	41 918·1	922.7	927°2	931.8	936·3	940 [.] 9	945 [•] 4	950°0	954°5	959'I	4 6
149	963·6	968.1	972°7	977.2	981·8	986 [.] 3	990 [•] 8	995°3	999'9	*004'4	4 5
150	42 008·9	013.4	017°9	022.5	027·0	031 [.] 5	036 [•] 0	040°5	044'9	049'4	4 5
151	42 05 3 9	058.4	062.9	067·3	071.8	076'3	080°8	085.3	089.7	094°2	4.5
152	098 7	103.2	107.6	112·1	116.5	121'0	125°4	129.8	134.3	138°7	4.4
153	143 1	147.5	151.9	156·4	160.8	165'2	169°6	174.1	178.5	183°0	4.4

XXV. S_v for Ogival-headed Projectiles (continued).

	11	1	1	1							
v	0	I	2	3	4	5	6	7	8	9	Diff.
<i>f. s.</i>	Feet	Feet	Feet	Feet	Feet	Feet	Feet	Feet	Feet	Feet	+
154	42 187.4	191.8	196·3	200'7	205'2	209 ^{.6}	214.0	218.4	222.9	227'3	4°4
155	231.7	236.1	240·5	245'0	249'4	253 ^{.8}	258.2	262.6	266.9	271'3	4°4
156	275.7	280.1	284·5	288'8	293'2	297 ^{.6}	302.0	306.4	310.7	315'1	4°4
157	42 319.5	323.9	328·2	332.6	336·9	341°3	345.7	350.0	354 [.] 4	35 ^{8·7}	4°4
158	363.1	367.4	371·8	376.1	380·5	384°8	389.1	393.5	397 [.] 8	402·2	4°3
159	406.5	410.8	415·1	419.5	423·8	428°1	432.4	436.7	441 [.] 1	445 [·] 4	4°3
160	42 449 ^{.7}	454°0	45 ⁸ ·3	462.6	466·9	471 ^{.2}	475 ^{.5}	479 ^{.8}	484°1	488.4	4°3
161	49 ^{2.7}	497°0	501·3	505.6	509·9	514 ^{.2}	518 ^{.5}	522 ^{.8}	527°0	531.3	4°3
162	535 ^{.6}	539°9	544·2	548.4	552·7	557 ^{.0}	561 [.] 3	565 ^{.5}	569°8	574.0	4°3
163	42 578·3	582.5	586·8	591.0	595 ^{.3}	599 ^{.5}	603.7	608.0	612·2	616·5	4°2
164	620·7	624.9	629·2	633.4	637 ^{.7}	641 [.] 9	646.1	650.3	654·6	658·8	4°2
165	663·0	667.2	671·4	675.7	679 ^{.9}	684 [.] 1	688.3	692.5	696·8	701·0	4°2
166	42 705 [.] 2	709 [.] 4	713 ^{.6}	717 [.] 8	722.0	726*2	730°4	734 ^{.6}	738·8	743°0	4°2
167	747 2	751 [.] 4	755 ^{.6}	759 [.] 7	763.9	768*1	772°3	776 [.] 5	780·6	784°8	4°2
168	789 [.] 0	793 [.] 2	797 [.] 3	801 [.] 5	805.6	809*8	814°0	818 [.] 1	822·3	826°4	4°2
169	42 830 [.] 6	834·8	838·9	843 [.] 1	847 ^{.2}	851.4	855.5	859 ^{.7}	863·8	868.0	4°2
170	872 [.] 1	876·2	880·4	884 [.] 5	838 ^{.7}	892.8	896.9	901 ^{.1}	905·2	909.4	4°1
171	913 [.] 5	917·6	921·7	925 [.] 9	930 0	934.1	938.2	942 [.] 3	946·5	950.6	4°1
172	42 954·7	958•8	962 · 9	967·1	971·2	975 [.] 3	979'4	9 ⁸ 3*5	987.6	991.7	4°I
173	995·8	999•9	*004·0	*008·1	*012·2	*016 [.] 3	*020'4	*024*5	*028.5	*032.6	4'I
174	43 036·7	040•8	044·9	048·9	053·0	057 [.] 1	061'2	065*3	069.3	073.4	4'I
175	43 077 5	081 6	085.6	089 ^{.7}	093.7	097·8	101·9	105·9	1 10 [.] 0	114°1	4'I
176	118 1	12211	126.2	130 ^{.2}	134.3	138·3	142·3	146·4	1 50 [.] 4	154°5	4'0
177	158 5	1625	166.5	170 ^{.6}	174.6	178·6	182·6	186·6	1 90 [.] 7	194°7	4'0
178	43 198·7	202.7	206.7	210'7	214.7	218.7	222.7	226·7	230 [.] 8	234·8	4°0
179	238·8	242.8	246.8	250'8	254.8	258.8	262.8	266·8	270 [.] 7	274·7	4°0
180	278·7	282.7	286.7	290'6	294.6	298.6	302.6	306·6	310 [.] 5	314·5	4°0
181	43 318·5	322.5	326·5	330°4	334'4	338·4	342 · 4	346·3	350·3	354 ^{•2}	4°0
182	358·2	362.2	366·1	370°1	374'0	378·0	381·9	385·9	389·8	393 ^{•8}	4°0
183	397·7	401.6	405·6	409°5	413'5	417·4	421·3	425·3	429·2	433 ^{•2}	3'9
184	43 437 1	441°0	444 ^{.9}	448 [.] 9	452·8	456 ^{.7}	460°6	464*5	468·5	472°4	3.9
185	476 3	480°2	484 ^{.1}	488 [.] 0	491·9	495 ^{.8}	499°7	503*6	507·5	511°4	3.9
186	515 3	519°2	523 ^{.1}	526 [.] 9	530·8	534 ^{.7}	538°6	542*5	546·3	550°2	3.9
187	43 554 [.] 1	558.0	561·9	565.7	569 [.] 6	573 ^{.5}	577 [.] 4	581·2	585·1	588.9	3.9
188	592 [.] 8	596.7	600·5	604.4	608 [.] 2	612 ^{.1}	615 [.] 9	619·8	623·6	627.5	3.9
189	631 [.] 3	635.1	639·0	642.8	646 [.] 7	650 ^{.5}	654 [.] 3	658·2	662·0	665.9	3.8
190	43 669.7	673 [.] 5	677 [.] 4	681 ·2	685 [.] 1	688·9	692 · 7	696·5	700.4	704°2	3.8
191	708.0	711 [.] 8	715 [.] 6	719·5	723 [.] 3	727·1	730·9	734·7	738.6	742°4	3.8
192	746.2	750 [.] 0	753 [.] 8	757 ^{·6}	761 [.] 4	765·2	769·0	772·8	776.6	780°4	3.8
193	43 784°2	788.0	791·8	795.6	799'4	803 ·2	807.0	810 [.] 8	814 [.] 5	818·3	3.8
194	822°1	825.9	829·6	833.4	837'1	840·9	844.7	848 [.] 4	852 [.] 2	855·9	3.8
195	859°7	863.5	867·2	871.0	874'7	878·5	882.2	886 [.] 0	889 [.] 7	893·5	3.8
196	43 897·2	900.9	904 ^{.7}	908·4	912·2	915.9	919 [.] 6	923 [.] 3	927.1	930 [.] 8	3°7
197	934·5	938.2	941.9	945·7	949·4	953.1	956 [.] 8	960 [.] 5	964.2	967 [.] 9	3'7
198	971·6	975.3	979.0	982•6	986·3	990.0	993 [.] 7	997 [.] 4	*001.0	*004 [.] 7	3'7

XXV. S_e for Ogival-headed Projectiles (continued).

U	0	I	2	3	4	5	6	7	S	9	Diff.
f.s.	Feet	Feet	Feet	Feet	Feet	Feet	Feet	Feet	Feet	Feet	+
199	44 008 · 4	012.1	0157	019.4	023.0	026.7	030.4	034°0	037'7	041.3	3.7
200	045 · 0	048.6	0523	055.9	059.6	063.2	066.8	070°5	074'1	077.8	3.6
201	081 · 4	085.0	0886	092.3	095.9	099.5	103.1	106°7	110'4	114.0	3.6
202	44 117 ⁻⁶	121°2	124 [.] 8	128·4	132.0	135 ^{.6}	139 ^{.2}	142 [.] 8	146·3	149 [.] 9	3.6
203	153 ⁻ 5	157°1	160 [.] 7	164·2	167.8	171 [.] 4	175 ^{.0}	178 [.] 5	182·1	185 [.] 6	3.6
204	189 ⁻ 2	192°7	196 [.] 3	199·8	203.4	206 9	210 [.] 4	213 [.] 9	217·5	221 [.] 0	3.5
205	44 224 [.] 5	228.0	231.5	235°1	238-6	242°1	245.6	249 [.] 1	252.6	256 [.] 1	3°5
206	259 [.] 6	263.1	266.6	270°1	273-6	277°1	280.6	284 [.] 1	287.5	291 [.] 0	3°5
207	294 [.] 5	298.0	301.4	304°9	308-3	311°8	315.2	318 [.] 7	322.1	325 [.] 6	3°5
20\$	44 329 ^{.0}	332°4	335 ^{.9}	339°3	342·8	346·2	349 ^{.6}	353°0	356°5	359 [.] 9	3°4
209	363 [.] 3	366°7	370 ^{.1}	373°5	376·9	380·3	383.7	387°1	390°4	393 [.] 8	3°4
210	397 [.] 2	400°6	404 ^{.0}	407°3	410·7	414·1	417.5	420°8	424°2	427 [.] 5	3°4
211	44 430°9	434 ^{.3}	437 ^{.6}	441.0	444 [•] 3	447 ^{.7}	451°0	454°4	457 ^{.7}	461 · 1	3°4
212	464°4	467 ^{.7}	471 ^{.0}	474.4	477 [•] 7	481 ^{.0}	4 ⁸ 4°3	487°6	490 ^{.9}	494 · 2	3°3
213	497°5	500 [.] S	504 ^{.1}	507.4	510 [•] 7	514 ^{.0}	517°3	520°6	523 ^{.8}	527 · 1	3°3
214	44 530 [.] 4	533 ^{.7}	537°0	540°2	543 ^{.5}	546°S	550°1	553°3	556 [.] 6	559 [.] 8	3°3
215	563 [.] 1	566 [.] 4	569°6	572°9	576 ^{.1}	579°4	582°6	585°8	589 [.] 1	592 [.] 3	3°2
216	595 [.] 5	59 ^{8.7}	601°9	605°2	608 [.] 4	611°6	614°8	618°0	621 [.] 3	624 [.] 5	3°2
217	44 627.7	630 [.] 9	634 [.] 1	637 [.] 3	640 ^{.5}	643 ^{.7}	646 [.] 9	650 [.] 1	653·2	656·4	3°2
218	659.6	662 [.] 8	666 [.] 0	669 [.] 1	672 ^{.3}	675 ^{.5}	678 [.] 7	681 [.] S	685·0	688·1	3°2
219	691.3	694 [.] 5	697 [.] 6	700 [.] S	703 ^{.9}	707 ^{.1}	710 [.] 2	713 [.] 4	716·5	719·7	3°2
220	44 722·8	725 [.] 9	729.1	732 ^{.2}	735 [.] 4	73 ^{S•5}	741.6	744°7	747 ^{.9}	751.0	3.1
221	754°1	757 [.] 2	760.3	763 ^{.5}	766 [.] 6	769 [•] 7	772.8	775°9	779 ^{.1}	782.2	3.1
222	785·3	788 [.] 4	791.5	794 ^{.6}	797 [.] 7	800 [•] 8	803.9	807°0	810 ^{.1}	813.2	3.1
223	44 816·3	819 [.] 4	822°5	825.5	828.6	831.7	834·S	837.9	840'9	844°0	3.1
224	847·1	850 [.] 2	853°2	856.3	859.3	862.4	865·5	868.5	871'6	874°6	3.1
225	877·7	880 [.] 8	883°8	886.9	889.9	893.0	896·1	899.1	902'2	905°2	3.1
226	44 908·3	911·3	914 [.] 4	917 [.] 4	920 [.] 5	923.5	926 [.] 5	929 [.] 6	932.6	935 ^{.7}	3.0
227	938·7	941·7	944 [.] 8	947 [.] 8	950 [.] 9	953.9	957 ^{.0}	960 [.] 0	963.1	966 [.] 1	3.0
228	969·2	972·2	975 [.] 3	97 ^{8.} 3	981 [.] 4	984.4	987 [.] 4	990 [.] 5	993.5	996 [.] 6	3.0
229	44 999 6	*002.6	*005.7	*008.7	*011.S	*014·S	*017.8	*020.9	*023:9	*027*0	3.0
230	45 0 30 0	033.0	036.1	039.1	042.2	045·2	048.2	051.3	054:3	057*4	3.0
231	060 4	063.4	066.4	069.5	072.5	075·5	078.5	081.6	084:6	087 7	3.0
232	45 090 ^{.7}	093.7	096·8	099.S	102 [.] 9	105.9	108.9	112 ^{.0}	115°0	118·1	3.0
233	121 ^{.1}	124.1	127·2	130.2	133 [.] 3	136.3	139.3	142 ^{.3}	145'4	148·4	3.0
234	151 [.] 4	154.4	157·5	160.5	163 [.] 6	166.6	169.6	172 ^{.6}	175'7	178·7	3.0
235	45 ISI 7	184.7	187.8	190 [.] 8	193 ^{.9}	196·9	199 [.] 9	203°0	206°0	209°1	3.0
236	212 I	215.1	218.2	221 [.] 2	224 ^{.3}	227·3	230 [.] 3	233°4	236°4	239°5	3.0
237	242 5	245.5	248.6	251 [.] 6	254 ^{.7}	257·7	260 [.] 7	263°8	266 8	269°9	3.0
238 239 240	45 272 [.] 9 303 [.] 4 333 [.] 8	275 ^{.9} 306 [.] 4 336 [.] 8	279°0 309°5 339°9	282°0 312°5 342°9	285.1 315.6 346.0	288.1 318.6 349.0	291.2 321.6 352.1	294 ^{.2} 3 ^{24.7} 355 ^{.1}	297 [.] 3 327 [.] 7 35 ^S [.] 2	300.3 330.8 361.2	3.0 3.0
241	45 364·3	367°3	370°4	373 [.] 4	376·5	379 ^{.5}	382.6	385.6	388.7	391 7	3.0
242	394·8	397°8	400°9	403 [.] 9	407 0	410 ^{.0}	413.0	416.1	419.1	422 ^{.2}	3.0
243	425·2	428°2	431°3	434 [.] 3	437·4	440 ^{.4}	443.5	446.5	449.6	452 ^{.6}	3.0

XXV. S, for Ogival-headed Projectiles (continued).

					-						
ซ	0	I	2	3	4	5	6	7	8	9	Diff.
<i>f.s.</i>	Feet	Feet	Feet	Feet	Feet	Feet	Feet	Feet	Feet	Feet	+
244	45 455 7	458.7	461.8	464.8	467.9	470'9	474°0	477'0	480°1	483-1	30
245	486 2	489.2	492.3	495.3	498.4	501'4	504°4	507'5	510°5	513-6	30
246	516 6	519.6	522.7	525.7	528.8	531'8	534°8	537'9	540°9	544-0	30
247	45 547 ^{.0}	550°0	553°1	556°1	559°2	562°2	565.2	568·3	571°3	574 [.] 4	30
248	577 ^{.4}	580°4	583°5	586°5	589°6	592°6	595.6	598·7	601°7	604 [.] 8	30
249	607 ^{.8}	610°8	613°8	616°9	619°9	622°9	625.9	629·0	632°0	635 [.] 1	30
250	45 638·1	641·1	644°1	647 ^{.2}	650°2	653 ^{.2}	656·2	659 ⁻²	662°3	665°3	3.0
251	668·3	671·3	674°3	677 ^{.3}	680°3	683 ^{.3}	686·3	689 ⁻ 3	692°3	695°3	3.0
252	698·3	701·3	704°3	707 ^{.3}	710°3	7 ¹ 3 ^{.3}	716·3	719 ⁻ 3	722°3	725°3	3.0
253	45 728·3	731.2	734 ^{•2}	737 ^{.2}	740 ⁻ 2	743 ^{.2}	746·2	749'I	752°1	755°0	30
254	758·0	761.0	763 ^{•9}	766 [.] 9	769 ⁻ 8	772 ^{.8}	775·8	778'7	781°7	784°6	30
255	787 ^{.6}	790.6	793 ^{•5}	796 [.] 5	799 ⁻ 4	802 ^{.4}	805·3	808'3	811°2	814°2	30
256	45817.1	820°0	823.0	825.9	828·9	831-8	834.7	837 ^{.6}	840°6	843 ^{.5}	279
257	846.4	849°3	852.2	855.2	858·1	861-0	863.9	866 [.] 8	869°7	872 ^{.6}	279
258	875.5	878°4	881.3	884.2	887·1	890-0	892.9	895 [.] 8	898°7	901 ^{.6}	279
259	45 904 5	907.4	910.3	913 ^{.2}	916 [.] 1	919 ^{.0}	921-9	924 [.] 8	927 ⁻⁶	930°5	279
260	933 4	936.3	939.1	942 ^{.0}	944 [.] 8	947 ^{.7}	950-6	953 [.] 4	956 ⁻ 3	959°1	279
261	962 0	964.9	967.7	970 ^{.6}	973 [.] 4	976 [.] 3	979-1	982 [.] 0	984 ⁻ 8	987°7	279
262	45 990 [.] 5	993 ^{.3}	996 [.] 1	999°0	*001.8	*004.6	*007.4	*010.2	*013°1	*015-9	2°8
263	46 0:8 [.] 7	021 ^{.5}	024 [.] 3	027°1	029.9	032.7	035.5	038.3	041°1	043-9	2°8
264	046 [.] 7	049 ^{.5}	052 [.] 3	055°1	057.9	060.7	063.5	066.3	069°0	071-8	2°8
265	46 074 6	077 [.] 4	080°1	082.9	085.6	0 ⁸ .4	091°2	093 [.] 9	096·7	099°4	2.8
266	102 2	104 [.] 9	107'7	110.4	113.2	115.9	118°6	121 [.] 4	124·1	126°9	2.7
267	129 6	132 [.] 3	135'0	137.8	140.5	143.2	145°9	148 [.] 6	151·3	154°0	2.7
268	46 156·7	159.4	162·1	164 [.] 8	167 ^{.5}	170°2	172°9	175 ^{.6}	178°3	18110	2.7
269	183·7	186.4	189·1	191 [.] 8	194 ^{.5}	197°2	199°9	202 ^{.6}	205°2	20719	2.7
270	210·6	213.3	215·9	218 [.] 6	221 ^{.2}	223°9	226°6	229 ^{.2}	231°9	23415	2.7
271	46 237 2	239 [.] 9	242·5	245°2	247 [.] 8	250 ⁻ 5	253°1	255.8	258·4	261·1	27
272	263 7	266 [.] 3	268·9	271°6	274 [.] 2	276 ⁻ 8	279°4	282.0	284·7	287·3	26
273	289 9	292 [.] 5	295·1	297°8	3 ^{00.} 4	3 ⁰ 3 ⁻ 0	305°6	308.2	310·8	313·4	26
274	46 316.0	318.6	321·2	323 [.] 8	326·4	329°0	331-6	334°2	336-8	339°4	26
275	342.0	344.6	347·2	349 [.] 7	352·3	354°9	357-5	360°0	362-6	365°1	26
276	367.7	370.3	372 8	375 [.] 4	377 ^{·9}	380°5	383-1	385°6	388-2	390°7	26
277	46 393°3	395 ^{.8}	39 ^{8·4}	400 ^{.9}	403.5	406°0	408°5	411°0	413 ^{.6}	416·1	2°5
278	418°6	421 ^{.1}	423 ^{.6}	426 ^{.2}	428.7	431°2	43377	436°2	438 ^{.8}	441·3	2 5
279	443°8	446 ^{.3}	448 ^{.8}	451 ^{.3}	453.8	456°3	458°8	461°3	463 ^{.8}	466·3	2°5
280	46 468·8	471°3	473 ^{.8}	476°2	478·7	481.2	483.7	4 ^{86·2}	4\$8.6	491-1	2°5
281	493·6	496°1	498 ^{.6}	501°0	503·5	506.0	508.5	510·9	513.4	515 8	2°5
282	51\$·3	520°7	523 ^{.2}	525°6	528·1	530.5	532.9	535 ⁴	537.8	540-3	2°4
283	46 542.7	545°1	547.6	55000	552°5	554 [.] 9	557 [.] 3	5597	562°2	564-6	2°4
284	567.0	569°4	571.8	574°3	576°7	579 [.] 1	581 [.] 5	5839	586°4	588-8	2°4
285	591.2	593°6	596.0	598°4	600°8	603 [.] 2	605 [.] 6	6080	610°4	612-8	2°4
286	46 61 5°2	617·6	620 ⁻⁰	622°3	624 ^{.7}	627°1	629 [.] 5	631-9	634°2	636-6	2'4
287	639°0	641·4	643 ⁻⁷	646°1	648 [.] 4	650°8	653 [.] 2	655-5	657°9	660-2	2'4
288	662°6	664·9	667 ⁻³	669°6	672 ^{.0}	674°3	676 [.] 6	679-0	681°3	683-7	2'3
289	46 686 o	688 [.] 3	690 ^{.7}	693°0	695.4	697 ⁻⁷	70010	702°3	704 ^{.7}	707°0	2°3
290	709 3	711.6	713 ^{.9}	716°3	718.6	720 ⁻⁹	72312	725°5	727 ^{.9}	730°2	2°3

XXVI. T_v for Ogival-headed Projectiles. (w = 534.22 grains.)

v	0	1	2	3	4	5	6	7	8	9	Diff.
f.s. 10 11 12	Seconds 9 [.] 9 25 [.] 1 37 [.] 5	Seconds 11.6 26.5 38.6	Seconds 13.2 27.8 39.7	Seconds 14.8 29.1 40.8	Seconds 16.4 30.3 41.9	Seconds 17'9 31'5 43'0	Seconds 19.4 32.8 44.0	Seconds 20'9 34'0 45'I	Seconds 22°3 35°2 46°1	Seconds 23.7 36.4 47.1	+ 1.2 1.1
13	4 ^{8·1}	49 ^{.0}	50°0	50 [.] 9	51·9	52·8	53 [.] 7	54°6	55:4	56·3	0.9
14	57 ^{·2}	58 ^{.0}	58°8	59 [.] 6	60·4	61·2	62 [.] 0	62°7	63:5	64·2	0.8
15	65 ^{·0}	65 ^{.7}	66°4	67 [.] 2	67·9	68·6	69 [.] 3	69°9	70:6	71·2	0.7
16	71.91	72 [.] 55	73 [.] 18	73 [.] 81	74 [.] 43	75°04	75.64	76·24	76·83	77°41	•61
17	77.99	78 [.] 56	79 [.] 12	79 67	80 [.] 22	80°76	81.29	81·82	82·35	82°87	•54
18	83.39	83 [.] 90	84 [.] 40	84 [.] 90	85 [.] 39	85°88	86.36	86·84	87·31	87°78	•49
19	88·24	88.69	89 [.] 14	89 · 58	90°02	90·46	90 [.] 89	91°32	91.74	92 ·16	·44
20	92·57	92.98	93 [.] 39	93 [.] 79	94°19	94·59	94 [.] 98	95°37	95.75	96·13	·40
21	96·51	96.88	97 [.] 26	97 [.] 63	97°99	98·35	98 [.] 70	99°05	99.40	99·75	·36
22	1 00°09	00°43	00.77	01°10	01·43	01·76	02*08	02·40	02·72	03.04	·33
23	03°35	03°66	03.97	04°27	04·58	04·88	05*18	05·47	05·77	06.05	·30
24	06°35	06°64	06.92	07°20	07·48	07·75	08*03	0S·30	08·57	08.84	·28
25	1 09·10	09°37	09 [.] 63	09 89	10°15	10.40	10.66	10 [.] 91	11·16	11.41	•26
26	11·65	11°90	12 [.] 14	12·38	12°62	12.85	13.09	13 [.] 32	13·55	13.78	•24
27	14 00	14°23	14 [.] 45	14·68	14°90	15.12	15.34	15 [.] 55	15·77	15.98	•22
28	1 16.19	16•40	16 [.] 61	16 [.] 81	17.02	17.22	17:43	17 [.] 63	17 [.] 83	18.03	°20
29	18.22	18•42	18 [.] 61	18 [.] 81	19.00	19.19	19:38	19 [.] 57	19 [.] 75	19.94	°19
30	20.12	20•31	20 [.] 49	20 [.] 67	20.85	21.02	21:20	21 [.] 38	21 [.] 56	21.73	°18
31	1 21°90	22.07	22·24	22.41	22.58	22°75	22·92	23.08	23·25	23.41	°17
32	23 57	23.73	23·89	24.05	24.21	24°36	24·52	24.67	24·83	24.98	°16
33	25°13	25.28	25·43	25.58	25.73	25°88	26·03	26.17	26·32	26.46	°15
34	1 26.60	26·74	26·88	27.02	27·16	27·30	27 [.] 44	27·58	27·71	27·85	*14
35	27.99	28·12	28·26	28.39	28·53	28·66	28 [.] 79	28·92	29·05	29·18	*13
36	29.31	29·44	29 · 57	29.69	29·82	29 · 94	30 [.] 07	30·19	30·31	30·43	*12
37	1 30.55	30 ^{.67}	30 [.] 79	30 [.] 91	31.02	31°14	31·26	31°37	31.49	31.60	12
38	31.72	31 ^{.8} 3	31 [.] 95	32 06	32.18	32°29	32·40	32°51	32.62	32.73	11
39	32.84	32 ^{.95}	33 [.] 06	33 [.] 17	33.27	33°38	33·48	33°59	33.69	33.80	11
40	1 33 [.] 90	34.00	34.11	34°21	34°31	34°41	34·51	34 ^{.61}	34.71	34·81	.10
41	34 [.] 91	35.01	35.10	35°20	35°29	35°39	35·48	35 ^{.58}	35.67	35·77	.10
42	35 [.] 86	35.96	36.05	36°14	36°24	36°33	36·42	36 ^{.51}	36.60	36·69	.01.
43	1 36·78	36·87	36·96	37 · 05	37.14	37·22	37·31	37°39	37·48	37°56	•09
44	37·65	37·73	37·82	37·90	37.99	38·07	38·16	38°24	38·32	38°41	•0\$
45	38·49	3 ⁸ ·57	38·65	3 ⁸ ·73	38.81	38·89	38·97	39°05	39·13	39°21	•0\$
46	1 39 [.] 29	39·36	39 [.] 44	39 [.] 52	39°59	39 ^{.67}	39 ^{.75}	39 [.] 82	39 [.] 90	39 [.] 97	•08
47	40 [.] 05	40·12	40 [.] 20	40 27	40°35	40 [.] 42	40 [.] 49	40 [.] 57	40 [.] 64	40 [.] 71	•07
48	40 [.] 78	40·86	40 [.] 93	41 [.] 00	41°07	41 [.] 14	41 [.] 21	41 [.] 28	41 [.] 35	41 [.] 42	•07
49	1 41.49	41·56	41.63	41·70	41.76	41·83	41.90	41.96	42 ^{.03}	42 ^{.09}	°07
50	42.16	42·23	42.29	42·36	42.42	42·49	42.56	42.62	42 ^{.69}	42 ^{.75}	°07
51	42.81	42·87	42.94	43·00	43.06	43·12	43.19	43.25	43 ^{.31}	43 ^{.37}	°06
52	14 3.430	3°491	3 [.] 552	3.613	3.673	3 ^{.7} 33	3.793	3 [.] 853	3·912	3.971	°060
53	4.030	4°089	4 [.] 147	4.205	4.263	4 [.] 321	4.379	4 [.] 436	4·493	4.550	°058
54	4.607	4°664	4 [.] 720	4.776	4.832	4 [.] 888	4.944	4 [.] 999	5·054	5.109	°056
55	14 5°164	5 [.] 219	5·273	5·327	5·381	5°435	5·489	5°542	5°595	5·648	°054
56	5°701	5 [.] 754	5·806	5·858	5·910	5°962	6·014	6°065	6°117	6·168	°052
57	6°219	6 [.] 270	6·321	6·371	6·422	6°472	6·522	6°572	6°621	6·671	°050

305

2()

V	v	V	T
X	$\boldsymbol{\Lambda}$	Y	1.

 T_v for Ogival-headed Projectiles (continued).

v	0	I	2	3	4	5	6	7	8	9	Diff.
<i>f. s.</i>	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	+
58	14 6·720	6.769	6.818	6.866	6.915	6.963	7'011	7:059	7'107	7°154	48
59	7·202	7.249	7.296	7.343	7.390	7.437	7'483	7:530	7'576	7°622	47
60	7·668	7.714	7.759	7.805	7.850	7.896	7'941	7:986	8'031	8°076	45
61	14 8·121	8·165	8·209	8·253	8·297	8-341	8·384	8·428	8·471	8·515	44
62	8·558	8·601	8·643	8·686	8·728	8-771	8·813	8·855	8·897	8·939	42
63	8·981	9·022	9·064	9·105	9·147	9*188	9·229	9·269	9·310	9·350	41
64	14 9·391	9.431	9°471	9.510	9°550	9.290	9.629	9.669	9.708	9.748	40
65	9·787	9.826	9°865	9.903	9°942	9.981	*0.019	*0.057	*0.096	*0.134	39
66	15 0·172	0.210	0°248	0.285	0°323	0.361	0.398	0.436	0.473	0.511	38
67	150.548	0.585	0.621	0.628	0.694	0 ^{.731}	0.767	0 ^{.803}	0 [.] 838	0 [.] 874	36
68	0.910	0.945	0.981	1.016	1.052	1 ^{.087}	1.122	1 ^{.157}	1 [.] 192	1 [.] 227	35
69	1.262	1.296	1.331	1.362	1.400	1 ^{.434}	1.468	1 ^{.502}	1 [.] 536	1 [.] 570	34
70	15 1.60 t	1.637	1.671	1.704	1.738	1.771	1·804	1.837	1.870	1.903	33
71	1.936	1.969	2.001	2.034	2.066	2.099	2·131	2.163	2.196	2.228	32
72	2.260	2.292	2.323	2.355	2.386	2.418	2·449	2.480	2.512	2.543	31
73	15 2·574	2.605	2.636	2.666	2.697	2·728	2·758	2.789	2.819	2·850	31
74	2·880	2.910	2.940	2.969	2.999	3·029	3·059	3.088	3.118	3·147	30
75	3·177	3.206	3.236	3.265	3.295	3·324	3·353	3.382	3.410	3·439	29
76	15 3.468	3 [.] 497	3·525	3°554	3.582	3.611	3.639	3.667	3.695	3.723	28
77	3.751	3 [.] 779	3·806	3°834	3.861	3.889	3.916	3.943	3.971	3.998	27
78	4.025	4 [.] 052	4·079	4°107	4.134	4.161	4.188	4.215	4.241	4.268	27
79	154 ^{.295}	4·321	4`347	4°374	4·400	4°426	4°452	4·478	4°504	4°530	26
80	4 ^{.556}	4·582	4`607	4°633	4·658	4°684	4°709	4·735	4°760	4°786	26
81	4 ^{.810}	4·836	4`861	4°886	4·911	4°935	4°961	4·986	5°010	5°035	25
82	15 5.060	5 ^{.08} 4	5·109	5·133	5°158	5·182	5°206	5°230	5·253	5 ²⁷⁷	24
83	5.301	5 ^{.325}	5·348	5·372	5°395	5·419	5°442	5°465	5·489	5 ⁵¹²	23
84	5.535	5 ^{.558}	5·581	5·603	5°626	5·649	5°671	5°694	5·716	5 ⁷³⁹	23
85	15 5.761	5.783	5.805	5·826	5.848	5·870	5·891	5.913	5.934	5.956	22
86	5.977	5.998	6.019	6·041	6.062	6·083	6·104	6.125	6.146	6.167	21
87	6.188	6.208	6.229	6·249	6.270	6·290	6·310	6.330	6.350	6.370	20
88	15 6·390	6.410	6·430	6·449	6·469	6·489	6·508	6·528	6·547	6·567	20
89	6·586	6.605	6·624	6·644	6·663	6·682	6·701	6·720	6·738	6·757	19
90	6·776	6.794	6·813	6·831	6·850	6·868	6·886	6·904	6·923	6·941	18
91	156.959	6·977	6.995	7.012	7.030	7·048	7 . 066	7.083	7'101	7°118	18
92	7.136	7·153	7.171	7.188	7.206	7·223	7.240	7.257	7'274	7°291	17
93	7.308	7·325	7.342	7.358	7.375	7·392	7.409	7.425	7'442	7°458	17
94	157°475	7:491	7·507	7·524	7:540	7*556	7:572	7*588	7 ^{.604}	7.620	16
95	7°636	7:652	7·667	7·683	7:698	7*714	7:730	7*745	7 ^{.761}	7.776	16
96	7°792	7:807	7·822	7·838	7:853	7*868	7:883	7*898	7 ^{.913}	7.928	15
97	157 [.] 943	7·958	7 [.] 973	7.987	8.002	8.017	8.032	8.046	8.061	8.075	15
98	8 [.] 090	8·104	8 [.] 118	8.133	8.147	8.161	8.175	8.189	8.204	8.218	14
99	8 [.] 232	8·246	8 [.] 260	8.273	8.287	8.301	8.315	8.329	8.342	8.356	14
100	15 8·370	8·383	8·397	8.410	8·424	8·437	8·450	8·463	8.477	8.490	13
101	8·503	8·516	8·529	8.542	8·555	8·568	8·581	8·594	8.606	8.619	13
102	8·632	8·645	8·657	8.670	8·682	8·695	8·707	8·719	8.732	8.744	12
103	15 8·756	8·768	8·779	8·791	8.802	8·814	8.825	8.836	8·848	8·859	11
104	8·870	8·881	8·892	8·902	8.913	8·924	8.934	8.944	8·954	8·964	10
105	8·974	8·984	8·994	9·003	9.013	9·023	9.032	9.041	9·051	9 · 060	10

В.

XXVI. T_v for Ogival-headed Projectiles (continued).

											1
7'	0	I	2	3	4	5	6	7	8	9	Diff.
	Seconds	Canada	Secondo	Secondo	Secondo	Second	Secondo	Sacada	Seconds	Seconda	+
f. s. 106	15 9.069	9°078	9°087	9'095	9'104	9.113	9'121	9.130	9.138	9'I47	9
107		9.163	9.171	9.179	9.187	9.195	9.203	9.211	9.218	9'226	8
107	9.122	9.242	9'250		9.265	9'273	9.281	9.288	9.296	9.303	S
100	9.234	9 242	9 230	9.257	9 203	9 - 13	9 201	9 200	9 290	9 303	U
109	159.311	9.318	9.325	9'333	9.340	9'347	9'354	9.361	9.368	9'375	7
IIO	9.382	9.389	9.396	9.403	9'410	9'417	9'424	9'43I	9.437	9.444	7
III	9'451	9.458	9'464	9'471	9'477	9.484	9'491	9'497	9.504	9.210	7
			0.500		9.543	9.549	0.444	9.562	9.568	0.644	6
112	159.517	9.523	9.530	9.236 9.600	9 543	9 549	9.555	9.625	9.632	9.575	6
113	9.281	9.287	9.594		9.668	9.674	9.680	9.686			6
114	9.644	9.620	9.626	9.662	9 003	9014	9 000	9 000	9.695	9.698	0
115	159.704	9.710	9.216	9.722	9.728	9.734	9.740	9.746	9.752	9.758	6
116	9.764	9.770	9.776	9.281	9.787	9.793	9.799	9.805	9.810	9.816	6
117	9.822	9.828	9.833	9.839	9.844	9.793 9.850	9.856	9.861	9.867	9.872	6
	1 -	-	9.889		-			-	1 1		-
118	159.878	9.883		9.894	9.900	9.905	9.910	9.916	9.921	9.927	5
119	9.932	9.937	9.943	9.948	9.954	9.959	9.964	9.970	9.976	9.981	5
120	9.986	9.991	9.996	*0.005	*0.002	0'012	*0.012	*0*022	*0*028	*0.033	5
121	160.0381	0432	0483	0535	0586	0637	0688	0738	0789	0839	51
122	0890	0940	0990	1040	1090	1140	1189	1239	1288	1338	50
123	1387	1436	1484	1533	1581	1630	1678	1726	1775	1823	48
	160' 1871		1966		2061		0.76		0050	0007	
124		1919	-	2014	1	2109	2156	2203 2668	2250	2297	47
125	2344	2390	2437	2483	2529	2576			2713	2759	46
126	2805	2850	2896	2941	2987	3032	3077	3122	3166	3211	45
127	160.3256	3300	3344	3389	3433	3477	3521	3565	3608	3652	44
128	3696	3739	3782	3826	3869	3912	3955	3998	4040	4083	43
129	4126	4168	4210	4253	4295	4337	4379	4421	4462	4504	42
130	160.4546	4587	4629	4670		4753	4704	4835	4876	4917	41
0					4712	4/55 5161	4794		5282		
131	4958	4999	5039	5080	5120		5201	5241		5322	40
132	5362	5402	5442	5481	5521	5561	5600	5639	5679	5718	40
133	160. 5757	5796	5835	5874	5913	5952	5991	6029	6067	6106	39 38
134	6145	6183	6222	6260	6299	6337	6375	6413	6450	6488	38
135	6526	6564	6601	6639	6676	6714	6751	6788	6826	6863	37
136	160.6000	6937	6974	7011	7048	7085	7122	7158	7195	7231	27
130	7268						7485				37 36
	7629	7304	7340	7377	7413	7449		7521	7557	7593	
138		7665	7700	7736	7771	7807	7842	7878	7913	7949	36
139	160.7984	8019	8054	8089	8124	8159	8194	8229	8263	8298	35
140	8333	8368	8402	8437	8471	8506	8540	8574	8609	8643	34
141	8677	8711	8745	8778	8812	8846	8880	8914	8947	8981	34
142	160.9012	90.18	9082	9115	9149	9182	9215	9218	9282	9315	33
143	9348	9381	9414	9447	9149	9513	9546	9578	9611	9643	
I44	9540	9709	9741	9447	9506	9839	9540	9904	9936	9968	33 32
					-						
145	101.0000	0032	0064	0096	0128	0160	0192	0224	0255	0287	32
146	0319	0351	0382	0414	0445	0477	0508	0540	0571	0603	32
147	0634	0665	0696	0728	0759	0790	0821	0852	0\$82	0913	31
148	161.0944	0975	1006	1036	1067	1098	1129	1159	1190	1220	31
149	1251	1281	1312	1342	1373	1403	1433	1463	1494	1524	30
150	1554	1584	1614	1644	1674	1704	1734	1764	1793	1823	30
1 - 1		-								- 1	
151	161.1823	1883	1913	1942	1972	2002	2031	2061	2090	2120	30
152	2149	2178	2208	2237	2267	2296	2325	2354	2384	2413	29
153	2442	2471	2500	2529	2558	2587	2616	2645	2673	2702	29
-						-					

•

XXVI. T_v for Ogival-headed Projectiles (continued).

υ	0	I	2	3	4	5	6	7	8	9	Diff.
<i>f. s.</i>	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	+
154	161·2731	2760	2788	2817	2845	2874	2902	2931	2959	2988	29
155	3016	3044	3073	3101	3130	3158	3186	3214	3243	3271	28
156	3299	3327	3355	3383	3411	3439	3467	3495	3523	3551	28
157	161·3579	3607	3635	3662	3690	3718	3746	3773	3801	3828	28
158	3856	3883	3911	3938	3966	3993	4020	4047	4075	4102	27
159	4129	4156	4183	4211	4238	4265	4292	4319	4346	4373	27
160	161° 4400	4427	4454	4481	4508	4535	4562	4588	4615	4641	27
161	4668	4695	4721	4748	4774	4801	4827	4854	4880	4907	27
162	4933	4959	4986	5012	5039	5065	5091	5117	5144	5170	26
163	161 [.] 5196	5222	5248	5275	5301	5327	5353	5379	5404	5430	26
164	5456	5482	5508	5533	5559	5585	5611	5636	5662	5687	26
165	5713	5739	5764	5790	5815	5841	5866	5892	5917	5943	26
166	161· 5968	5993	6018	6044	6069	6094	6119	6144	6170	6195	25
167	6220	6245	6270	6295	6320	6345	6370	6395	6420	6445	25
168	6470	6495	6520	6544	6569	6594	6619	6643	6668	6692	25
169	161 [.] 6717	6742	6766	6791	6815	6840	6864	6889	6913	6938	25
170	6962	6986	7010	7035	7059	7083	7107	7131	7156	7180	24
171	7204	7228	7252	7277	7301	7325	7349	7373	7397	7421	24
172	161 [.] 7445	7469	7493	7516	7540	7564	7588	7612	7635	7659	24
173	7683	7707	7730	7754	7777	7801	7825	7848	7872	7895	24
174	7919	7942	7966	7989	8013	8036	8059	8082	8106	8129	23
175	161 [.] 8152	8175	8198	82 22	- 8245	8268	8291	8314	8338	8361	23
176	8384	8407	8430	8453	8476	8499	8522	8545	8567	8590	23
177	8613	8636	8658	8681	8703	8726	8749	8771	8794	8816	23
178	161·8839	8862	8884	8907	8929	8952	8974	8997	9019	9042	23
179	9064	9086	9108	9131	9153	9175	9197	9219	9242	9264	22
180	9286	9308	9330	9353	9375	9397	9419	9441	9463	9485	22
181	161.9507	9529	9551	9572	9594	9616	9638	9660	9681	9703	22
182	9725	9747	9769	9790	9812	9834	9856	9877	9899	9920	22
183	9942	9964	9985	*0007	*0028	*0050	*0071	*0093	*0114	*0136	22
184 185 186	162°0157 0369 0579	0178 0390 0600	0199 0411 0621	0221 0432 0642	0242 0453 0663	0263 0474 0684	0284 0495 0705	0305 0516 0726	0327 0537 0746	0348 0558 0767	21 21 21 21
187	162.0788	0809	0829	0850	1076	0891	0912	0932	0953	0973	2I
188	0994	1014	1035	1055		1096	1116	1137	1157	1178	20
189	1198	1218	1239	1259		1300	1320	1340	1361	1381	20
190 191 192	162° 1401 1602 1801	1421 1622 1821	1441 1642 1841	1461 1662 1860			1521 1722 1920	1541 1742 1940	1562 1761 1959	1582 1781 1979	20 20 20
193 194 195	162° 1999 2194 2 388	2019 2213 2407	2038 2233 2426	2058 2252 2446	2272	2291	2116 2310 2503		2349	2561	20 19 19
196 197 198	162 [.] 2580 2769 2957	2599 2788	2618 2807 2994	2637 2825 3013	2844	2863	2882	2901	2919 3106	3124	19 19 19
199 200 201	162· 3143 3326 3508	3344	3180 3362 3544	3381	3399	3417	3435	3453			18 18 18

307

20 - 2

XXVI. T_v for Ogival-headed Projectiles (continued).

1								1			
υ	0	I	2	3	4	5	6	7	8	9	Diff.
1.5.	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	+
202	162. 3687	3705	3723	3740	3758	3776	3794	3811	3829	3846	18
203	3864	3882	3899	3917	3934	3952	3969	3987	4004	4022	18
204	4039	4056	4074	4091	4109	4126	4143	4160	4178	4195	17
205	162.4212	4229	4246	4264	4281	4298	4315	4332	4349	4366	17
206	4383	4400	4417	4434	4451	4468	4485	4502	4518	4535	17
207	4552	4569	4586	4602	4619	4636	4653	4669	4686	4702	17
208	162.4719	4735	4752	4768	4785	4801	4817	4834	4850	4867	16
200	4883	4899	4915	4932	4948	4964	4980	4996	5013	5029	16
210	5045	5061	5077	5093	5109	5125	5141	5157	5173	5189	16
211	162. 5205	5221	5237	5252	5268	5284	5300	5316		5347	16
212	5363	5379	5394	5410	5425	5441	5457	5472	5331 5488	5503	16
213	5519	5535	5550	5566	5581	5597	5612	5628	5643	5659	16
								5780	0.0		
214 215	162 [.] 5674 5826	5689 5841	5704 5856	5720 5871	5735 5886	5750 5901	5765	5931	5796	5811 5961	15 15
215	5976	5991	6006	6021	6036	6051	6066	6081	6095	6110	15
					l v						-
217 218	162.6125	6140 6286	6154 6300	6169	6183	6198	6213	6227	6242	6256 6402	15
210	6271 6417	6431	6446	6315 6460	6329 6475	6344 6489	6359	6373 6517	6532	6546	15 14
-									1		
220	162.6560	6574	6588	6603	6617	6631	6645	6659	6674	6688	14
221 222	6702 6843	6716	6730 6871	6745 6885	6759 6899	6773 6913	6787	6801 6941	6815	6829	14
		6857							6954	-	14
223	162.6982	6996	7010	7023	7037	7051	7065	7079	7092	7106	14
224	7120	7134	7147	7161	7174	7188	7202	7215	7229	7242	14
225	7256	7270	7283	7297	7310	7324	7338	7351	7365	7378	14
226	162.7392	7405	7419	7432	7446	7459	7472	7486	7499	7513	13
227	7526	7539	7553	7566	7580	7593	7606	7620	7633	7647	13
228	7660	7673	7687	7700	7714	7727	7740	7753	7767	7780	13
229	162.7793	7806	7819	7833	7846	7859	7872	7886	7899	7913	13
230	7926	7939	7952	7966	7979	7992	8005	8018	8032	8045	13
231	8058	8071	8084	S097	8110	8123	8136	8149	8162	8175	13
232	162.8188	8201	8214	8228	8241	8254	8267	82So	8293	8306	13
233	8319	8332	8345	8358	8371	8384	8397	8410	8423	8436	13
234	8449	8462	8475	8488	8501	8514	8527	8540	8553	8566	13
235	162.8579	8592	8605	8617	8630	8643	8656	8669	8682	8695	13
236	8708	8721	8734 8862	8746	8759	8772	8785	8798	8810	8823	13
237	8836	8849	8862	8874	\$887	8900	8913	8926	8938	8951	13
238	162.8964	8977	8990	9002	9015	9028	9041	9054	9066	9079	13
239	9092	9105	9117	9130	9142	9155	9168	9181	9193	9206	13
240	9219	9232	9244	9257	9269	9282	9295	9308	9320	9333	13
241	162.9346	9359	937 1	9384	9396	9409	9422	9434	9447	9459	13
242	9472	9485	9497	9510	9522	9535	9548	9560	9573	9585	13
243	9598	9610	9623	9635	9648	9660	9673	9685	9698	9710	12
244	162.9723	97,35	9748	9760	9773	9785	9797	9810	9822	9835	12
245	9847	9859 9983	9872	9884	9897	9909	9921	9934	9946	9959	12
246	9971	9983	9996	*0008	*0021	*0033	*0045	*0058	*0070	*0083	12
247	163.0095	0107	0119	0132	0144	0156	0168	0180	0193	0205	12
248	0217	0229	0241	0254	0266	0278	0290	0302	0315	0327	I 2
249	0339	0351	0363	0376	0388	0400	0412	0424	0437	0449	12
					_		1				

GENERAL TABLES,

ż	0	I	2	3	4	5	6	7	8	9	Diff.
		~ 1	~		~	· ·	· ·			~ .	
f.s.	Seconds	Seconds									+
250	163.0461	0473	0485	0497		·0521	0533	0545	0557	0569	12
25 I	0581	0593	0605	0617	0629	0641	0653	0665	0677	0689	12
252	0701	0713	0725	0736	0748	0760	0772	0784	0795	0807	12
253	163.0819	0831	0843	0854	0866	0878	0890	0902	0913	0925	12
254	0937	0949	0960	0972	0983	0395	1007	1018	1030	1041	12
255	1053	1065	1076	1088	1099	IIII	1123	1134	1146	1157	12
256	163.1169	1180	1192	1203	1215	1226	1237	1249	1260	1272	II
257	1283	I 294	1305	1317	1328	1339	1350	1362	1373	1385	II
258	1396	1407	1418	1430	I44I	1452	1463	1474	1486	1497	II
259	163.1208	1519	1530	1542	1553	1564	1575	1586	1597	1608	II
260	1619	1630	1641	1652	1663	1674	1685	1696	1707	1718	II
261	1729	1740	1751	1762	1773	1784	1795	1806	1816	1827	II
											1 1
262	163.1838	1849	1860	1870	1881	1892	1903	1914	1924	1935	II
263	1946	1957	1967	1978	1988	1999	2010	2020	2031	204I	II
264	2052	2062	2073	2083	2094	2104	2115	2125	2136	2146	10
265	163.2157	2167	2178	2188	2199	2209	2219	2230	2240	2251	IO
205	2261	2271	2281	2292	2302	2312	2322	2332	2343	2353	IO
			-				-			2455	10
267	2363	2373	2383	2394	2404	2414	2424	2434	2445		
268	163.2465	2475	2485	2496	2506	2516	2526	2536	2546	2556	IO
269	2566	2576	2586	2596	2606	2616	2626	2636	2646	2636	IO I
270	2666	2676	2686	2695	2705	2715	2725	2735	2744	2754	IO
	1 16210561	0774	2784-	2793	2803	2813	2823	2833	2842	2852	10
271	163.2764	2774 2872	2881	2/93	2900	2910	2920	2929	2939	2948	IO
272					2900	3006	3016	3025	3035	3044	IO
273	2958	2968	2977	2987			-				
274	163. 3054	3063	3073	3082	3092	3101	3110	3120	3129	3139	9
275	3148	3157	3167	3176	3186	3195	3204	3214	3223	3233	9
276	3242	3251	3260	3270	3279	3288	3297	3306	3316	3325	9
					3371	3380	3389	3398	3407	3416	9
277	163.3334	3343	3352	3362		3470	3479	3488	3497	3506	9
278	3425	3434	3443	3452	3461	3560	3569	3578	3587	3596	9
279	3515	3524	3533	3542	3551			1			11
280	163.3605	3614	3623	3631	3640	3649	3658	3667	3675	3684	9
281	3693	3702	3711	3719	3728	3737	3746	3755	3763	3772	9
282	3781	3790	3798	3807	3815	3824	3833	3842	3850	3859	9
283	163. 3868	3877	3885	3894	3902	3911	3920	3928	3937	3945	9
					3988	3996	4004		4021	4030	98
284	3954	3962	3971	3979	4072	4080				4114	8
285	4038	4046	4055	4003							8
286	163.4122	4130	4139	4147	4156	4164	4172			4197	8
287	4205	4213	4221	4230	4238	4246				4279	8
288	4287		4303	4312	4320	4328	4336	4344	4353	4361	1
- 8-			4385	1202	4401	4409	4417	4425	4433	4441	8
289	163.4369			4393	4481	4489	4497			4521	8
290	4449	4457	4465	4473	4401	4409	1177	1.5-5	1		1
1		4		1		-					

XXVI. T_v for Ogival-headed Projectiles (continued).

XXVII. Values of $\frac{k}{g}$ for the Newtonian Law, and of $\frac{\Re}{g}$ for the Cubic Law of the Resistance of the Air to Spherical and Ogival-headed Projectiles ($\Pi = 1.206$ kil.; or $\omega = 527$ grains; g = 9.809 m. s.).

	Sphe Proje		Ogival- Proje	headed ctiles.		Sphe Proje	erical ctiles.	Ogival- Proje	headed ctiles.
	Newtonian Law	Cubic Law	Newtonian Law	Cubic Law		Newtonian Law	Cubic Law	Newtonian Law	Cubic Law
b	tt g	<u>跳</u> g	<u>k</u> g	<u>跳</u> g	b	tt g	and the second s	k g	Tt B
<i>m_s.</i> 50 60 70 80 90			1'40 1'40 1'40 1'40 1'40	28.10 23.41 20.07 17.55 15.60	<i>m. s.</i> 450 460 470 480 490	4.69 4.71 4.73 4.75 4.76	10.42 10.25 10.07 9.90 9.72	3'43 3'42 3'40 3'38 3'36	7·62 7·44 7·24 7·04 6·85
100 110 120 130 140			1'40 1'40 1'40 1'40 1'40	14 ^{.0} 3 12.76 11.69 10.79 10.02	500 510 520 530 540	4.77 4.78 4.78 4.78 4.78 4.78 4.78	9·55 9·37 9·19 9·02 8·85	3'34 3'31 3'29 3'27 3'25	6.67 6.50 6.32 6.16 6.02
150 160 170 180 190			1'40 1'40 1'40 1'40 1'40	9:36 8:77 8:25 7:79 7:39	550 560 570 580 590	4.78 4.78 4.78 4.80 4.80 4.83	8·68 8·53 8·39 8·28 8·18	3.23 3.21 3.20 3.19 3.18	5 ^{.8} 7 5.73 5.60 5.48 5.38
200 210 220 230 240			1'40 1'40 1'40 1'40 1'40	7.02 6.68 6.38 6.10 5.85	600 610 620 630 640	4 ^{.85} 4 ^{.87} 4 ^{.88} 4 ^{.88} 4 ^{.88}	8.08 7.98 7.87 7.74 7.60	3·17 3·18 3·20 3·23 3·26	5·28 5·21 5·16 5·13 5·10
250 260 270 280 290	2.68 2.79 2.89 3.00 3.11	10.72 10.72 10.72 10.72 10.72	1.41 1.46 1.51 1.57 1.62	5.62 5.60 5.60 5.60 5.60	650 660 670 680 690	4·85 4·83 4·82 4·80 4·79	7:46 7:32 7:19 7:07 6:94	3·30 3·33 3·36 3·37 3·35	5.07 5.05 5.01 4.95 4.86
300 310 320 330 340	3.23 3.39 3.63 3.84 4.01	10.75 10.93 10.35 11.63 11.79	1.68 1.75 2.12 2.59 2.79	5.60 5.66 6.64 7.83 8.21	700 710 720 730 740	4.78	6.82	3.32 3.28 3.23 3.18 3.14	4.75 4.62 4.49 4.36 4.24
350 360 370 380 390	4.15 4.27 4.36 4.42 4.42 4.47	11.86 11.87 11.79 11.64 11.45	2.91 3.00 3.09 3.17 3.25	8·34 8·34 8·34 8·34 8·34 8·34	750 760 770 780 790			3.10 3.07 3.08 3.10	4.13 4.04 3.99 3.95 3.92
400 410 420 430 440	4:50 4:54 4:59 4:63 4:66	11.24 11.08 10.92 10.76 10.59	3'32 3'37 3'40 3'42 3'43	8·30 8·21 8·10 7·96 7·80	800 810 820 830 830 840			3.13 3.17 3.20 3.24 3.28	3.91 3.91 3.90 3.90

Approximate Laws of the Resistance of the Air to the Motion of Projectiles (French Measures).

 $\Pi = 1.206$ kil.; $\omega = 527$ grains; g = 9.809 m. s.

XXVIII. Spherical Projectiles.

b	>396 m. s.,	$\rho \propto \mathfrak{b}^2$,	$\frac{\mathrm{ft}}{\mathrm{g}}=4.76\mathrm{i},$	$\log \frac{k}{g} = 0.677.4,$
b <	< 396 > 335 m. s.,	$ ho \propto \mathfrak{b}^3$,	$\frac{\mathbf{R}}{\mathbf{g}} = 11.703,$	$\log \frac{\mathbf{lk}}{\mathbf{g}} = 1.068$
b -	<335>305 m. s.,	$ ho \propto b^4$,	$\frac{\mathfrak{h}}{g}=35.320,$	$\log \frac{\mathfrak{h}}{g} = 1.54839,$
b -	<305>256 m. s.,	$\rho \propto b^3$,	$\frac{\mathbf{i}\mathbf{k}}{\mathbf{g}} = 10.200,$	$\log \frac{\pi}{g} = 1.02963,$
b.	<256 m.s. ,	$\rho \propto b^2$,	$\frac{k}{g} = 2.744,$	$\log \frac{\mathbf{k}}{\mathbf{g}} = 0.43833.$

XXIX. Ogival-headed Projectiles.

b > 396 m. s.,	$\rho \propto b^2$,	$\frac{k}{g} = 3.275,$	$\log \frac{\mathbf{k}}{\mathbf{g}} = 0.5151S,$
b<396>335 m. s.,	$ ho \propto \mathfrak{b}^3$,	$\frac{\mathbf{II}}{\mathbf{g}} = 8.302,$	$\log \frac{\mathbf{x}}{\mathbf{g}} = 0.91916,$
\$<335>305 m. s.,	ρα b ⁶ ,	$\frac{\mathbf{IL}}{g} = 200.92,$	$\log \frac{\eta L}{g} = 2.31580,$
b<305>250 m. s.,	$\rho \propto b^3$,	$\frac{\mathfrak{A}}{g}=5.000,$	$\log \frac{\mathbf{II}}{g} = 0.74822,$
b<250 m. s. ,	$\rho \propto b^2$,	$\frac{it}{g} = 1.403,$	$\log \frac{k}{g} = 0.14710.$

312 GENERAL TABLES (French Measures). XXX. $\mathfrak{S}_{\mathfrak{b}}$ for Spherical Projectiles (II = 1.206 kil. or $\omega = 527$ grains).

	ΛΛΛ	·· ~ 0		morro		jectile	~ (**	1 20	•		5-18	rams	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	U	0	I	2	3	4	5	6	7	8	9	Diff.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					Metres								
										2400	2755		
		5708	3327	3010		6845		4/21		7864	5531		
		8363						0821			*0528		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		10761			-			-					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3018					4097			4728	4936		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18						6158	6357		6753	6951		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19				7730		8113	8304	8494	8683	8871		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20		9245		9613			1 -			-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											2427		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							3433	3598		3920			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					6202		65048	6750		7050			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													ł
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-										*0029		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						0674					1293	126	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1414		1655	1774								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2587								3469			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						1						1	ł
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3 4095		4887	4982							93	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6456	6536	6615	6604	6772	6850			7080		78	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			7305			7526	7599				7885	73	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											8570	68	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36		8702	8768	8834	8899	8964	9028	9092	9156	9220		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37		9347	9410	9473	9535	9598	9660	9722	9784	9845		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						*0145	*0204	*0203			"044I	59	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												50	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						-				-		11	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										2588			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					2845					3096			l
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3195											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								3973					ł
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	47				4704					4989			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					5653				5825	5434			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					6082		6168						1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51			6462	6504	6545	6586	6627	-			41	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6789	6830			6952	6993	7033	7074	7114			1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			7236	7276		7356	7396	7436	7476	7516	7556		1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		7595	7035	8064	7713	7752	7792	7831	8257	7909	7948	39	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						8502						1 30	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	57	8740		8823	8861	8808							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	58											36	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	59		9517				9659	9694		9765	9800		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			9870			9975	0100		*000	*0114			-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													T
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0557			0057							T
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1285								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-										
67 2151 2183 2214 2246 2277 2309 2340 2371 2402 2434 31 68 2405 2496 2527 2558 2589 2620 2651 2682 2713 2744 31	66		1865									11 -	I
			2183	2214	2246	2277			2371				
<u>09 2775 2800 2837 2808 2899 2930 2960 2991 3021 3052 31</u>			2496		2558	2589	2620	2651	2682		2744	31	T
	09	1 2775	2806	2837	2868	2899	2930	2960	2991	3021	3052	31	1

GENERAL TABLES (French Measures). 313

XXXI. \mathbb{T}_{v} for Spherical Projectiles (II = 1.205 kil. or $\omega = 527$ grains).

6	0	I	2	3	4	5	6	7	8	9	Diff.
m. s.	Seconds	Seconds	Seconds	Seconds	Seconds		Seconds	Seconds	Seconds	Seconds	+
12	55.9	58.5	61.1	63.6	66° I	68.5	70.8	73.1	75.4	77.6	2.4
13	79.8	82.0	84.2	86.4	88.5	90 6	92.6	94.6	96.6	98.5	2'1
14	100.4	102.3	104.1	105.9	107.7	109.2	111.5	113.0	114.7	116.4	1.8
15	118.0	119.7	121.3	122.9	124.5	126.1	127.6	129'1	130.6	132.1	1.6
16	133.2	135.0	136.4	137.8	139.2	140.6	142.0	143.4	144.7	146.0	1.4
17	147.2	148.5	149.7	151.0	152.2	153.4	154.6	155.8	156.0	158.1	1.5
18	1 59.2	160.4	161.5	162.6	163.7	164.9	166.0	167.1	168.2	169.2	1.1
19	170.2	171.2	172.2	173.2	174.2	175.2	176.2	177.1	178.1	179.0	1.0
20	180.0	180.0	181.8	182.7	183.6	184.5	185.4	186.3	187.1	188.0	0.0
21	1 88.83	89.66	90.49	91.31	92.13	92.91	93.75	94.54	95.33	96.10	.81
22	96.87	97.63	98.39	99.14	99.88	*00.62	*01.32	*02.08	95°33 *02'81	*03.52	.74
23	2 04 23	04.92	05.61	06.29	06.97	07.65	08.32	08.99	09.65	10.31	.68
24	10.96	11.01	12.25	12.88	13.21	14.13	14.75	15.36	15.96	16.20	.62
25	17.15	17.74	18.33	18.01	19.49	20.07	20.64	21.51	21.77	22.31	.57
26	2 22.84	23.38	23.92	24.45	24.97	25.48	25.99	26.49	26.99	27.48	.52
27	27.96	28.44	28.91	29.38	29.85	30.31	30.77	31.22	31.67	32.11	•46
28	32.55	32.98	33.40	33.82	34.24	34.65	35.06	35.46	35.86	36.26	.41
29	36.65	37.04	37.43	37.81	38.19	38.56	38.93	39.29	39.65	40.01	37
30	40.36	40.71	41.02	41.39	41.73	42.07	42.41	42.74	43.06	43.37	33
31	2 43.68	43.99	44.29	44.60	44.90	45.20	45.49	45.78	46.06	46.34	.30
32	46.62	46.89	47.15	47.42	47.68	47.94	48.20	48.46	48.71	48.96	.26
33	49.20	49.44	49.68	49.92	50.12	50.38	50.01	50.84	51.02	51.29	23
34	51.21	51.73	51.95	52.12	52.38	52.59	52.80	53.01	53.21	53.41	'21
35	53.61	53.81	54.01	54.21	54.40	54.60	54.79	54.98	55.12	55.36	.19
36	2 55.54	55.72	55.90	56.08	56.26	56.44	56.61	56.79	56.96	57.13	18
37		57.47	57.64	57.81	57.98	58.15	58.31	58.48	58.64	58.80	17
37 38	57°30 58°96	59.12	59.28	59.44	59.29	59.75	59.90	60.02	60.20	60.35	15
39	60.20	60.65	60.80	60.95	61.10	61.22	61·39 62·80	61.23	61.62	61.82	•15
40	61.96	62.10	62.24	62.38	62.22	62.66	62.80	62.94	63.02	63.51	14
41	2 63.34	63.48	63.61	63.74	63.87	64.00	64.12	64.25	64.38	64.21	13
42	64.63	64.76	64.88	65.01	65.13	65.26	65.38	65.20	65.62	65.74	·12
43	65.86	65.98	66.10	66.22	66.33	66.45	66.26	66.68	66.79	66.91	12
44	67.02	67.14	67.25	67.36	67.47	67.58	67.69	67.80	67.91	68.02	11.
45	68.13	68.24	68.34	68.45	68.55	68.66	68.76	68.87	68.97	69.07	01.
46	2 69.17	69.28	69.38	69.48	69.28	69.68	69.78	69.88	69.98	70.08	.10
	70.17	70.27	70.36	70.46	70.26	70.65	70.75	70.84	70.94	71.03	.10
47 48	27 1.123	1.510	1.308	1.400	1.495	1.283	1.674	1.765	1.855	1.945	.092 .087
49	2.034	2.123	2.511	2.299	2.387	2.474	2.261	2.648	2.734	3.661	·084
50	2.905	2.990	3.022	3.100	3.244	3.358	3.411	3.495	3.228		
51	27 3.743	3.825	3.907	3.988	4.069	4.120	4.230	4.310	4.389	4.468	°OSI
52	4.547	4.625	4.703	4.781	4.859	4.936	5.013	5.030	5.167	5.243	077
53	5.319	5.395	5.471	5.246	5.621	5.696	5.770	5.844	5.917	5 991 6.712	°075
54	6.064	6.137	6.209	6.585	6.324	6.426	6.498	6.570	7.340	7.409	072
55	6.783	6.854	6.924	6.994	7.063	7.133	7.202	7.271		8.080	067
56	27 7·477 8·145	7°545 8°210	7.613	7.681	7.748	7.815	7.882	7.948	8.014	8.726	007
57 58	8.145		8.275	8.340	8.405	8.471	8.534	8.598	9.286	9.347	005
58	8.789	8.852	8.915	8.978	9.040	9.102	9.163	9·225 9·826	9.885	9.94	.060
59	9.408	9.469	9.529	9.289	9.648	9.708	9.767	0.406	0.463	0.520	055
60	280.003	0.001	0.110	0.122	0.234	0.292	0.349		1.050	1.075	055
61	280.577	0.633	0.680	0.745	0.800	0.855	0.010	0.965	1.220	1.612	054
62	1.150	1.184	1.538	1.292	1.346 1.874	1.400	1.453 1.977	2.029	2.080	2.132	052
63	1.662	1.218	1.770	1.822	2.386	1·926 2·437	2.487	2.537	2.287	2.637	.050
64	2.183	2.234	2.285	2.336	2.300	2.934	2.983	3.032	3.081	3.130	.049
65	2.687	2.737	2.786		1		3.466	3.214	3.201	3.609	048
66	28 3.178	3.226	3.274	3.322	3.370	3·418 3·892	3.938	3.984	4.030	4.076	047
67	3.626	3.704	3.751	3.798	4.304	4.349	4.301	1.730	4.484	4.529	.045
68	4.122	4.168	4.213	4.259	4 304	4.796	4.394 4.840	4.884	4.928	4.972	.041
69	4.574	4.619	4.663	4/00	413-	14155	1				

1	1			·····			1		1		
5	0	I	2	3	-1	5	6	7	8	9	Diff.
<i>m. s.</i>	Metres	Metres	Metres	Metres	Metres	Metres	Metres	Metres	Metres	Metres	+
5	4 0083	1516	2923	4307	5666	7002	8312	9596	*0857	*2101	1335
6	5 3323	4524	5706	6871	8018	9148	*0260	*1355	*2432	*3491	1130
7	6 4529	5558	6573	7575	8564	9536	*0499	*1448	*2385	*3312	966
8	7 4226	5128	6020	6899	7770	8631	9484	*0328	*1159	*1977	851
9	8 2785	3586	4381	5168	5946	6715	7476	8228	8975	9714	770
10	9 0443	1169	1885	2593	3292	3986	4677	5358	6035	6703	696
11	9 7363	8022	8673	9319	9961	*0594	*1222	*1847	*2466	* 3077	635
12	10 3688	4291	4889	5482	6071	6651	7232	7808	8379	8946	584
13	10 9504	*0058	*0612	*1162	*1707	*2243	*2779	*3311	*3843	*4366	540
14	11 4889	5403	5918	6424	6929	7430	7931	8428	8921	9409	502
15	11 9897	*0384	*0864	*1338	*1809	*2279	*2745	*3211	*3673	*4130	470
16	12 4587	5040	5488	5937	6381	6825	7264	7699	8135	8565	442
17	12 8996	9423	9845	*0267	*0689	*1102	*1515	*1928	*2337	*2742	416
18	13 3146	3550	3951	4351	4746	5142	5533	5924	6311	6694	394
19	13 7076	7459	7837	8215	8593	8966	9340	9709	*0079	*0443	374
20	14 0808	1169	1529	1890	2246	2602	2958	3310	3657	4004	355
21	14 4351	4694	5037	5380	5723	6061	6396	6734	7068	7398	339
22	14 7728	8057	8383	8712	9038	9358	9679	*0000	*0321	*0638	323
23	15 0959	1275	1592	1904	2212	2524	2831	3139	3442	3750	310
24	15 4053	4357	4660	4959	5254	5552	5 ⁸ 47	6142	6436	6726	297
25	15 7016	7306	7597	7882	8168	8449	8726	9003	9276	9548	281
26	15 9821	*0089	*0357	*0621	*0880	*1140	*1399	*1654	*1909	*2160	260
27	16 2410	2661	2911	3156	3400	3644	3886	4124	4358	4591	242
28	16 4819	5052	5281	5509	5738	5962	6184	6406	6626	6846	225
29	16 7066	7281	7492	7707	7918	8129	8336	8543	8749	8956	210
30	16 9158	9360	9563	9760	9956	*0152	*0345	*0538	*0732	*0921	196
31	17 1110	1299	1484	1664	1840	2015	2187	2354	2521	2679	174
32	17 2833	2978	3123	3260	3396	3528	3655	3783	3906	4029	133
33	17 4148	4267	4384	4499	4613	4725	4836	4947	5057	5164	113
34	17 5271	5377	5482	5586	5690	5793	5895	5996	6098	6199	103
35	17 6299	6399	6498	6595	6693	6790	6888	6984	7079	7175	97
36	17 7269	7363	7457	7550	7642	7734	7825	7916	S007	8098	92
37	17 8188	8277	8365	8453	8540	8627	8714	8800	SSS6	8972	87
38	17 9057	9141	9225	9309	9392	9475	9557	9639	9721	9801	83
39	17 9882	9962	*0041	*0120	*0200	*0278	*0356	*0434	*0512	*0589	79
40	18 0666	0743	0819	0S95	0971	1047	1122	1197	1271	1346	76
41	18 1419	1493	1566	1640	1713	1786	1858	1931	2003	2074	73
42	18 2146	2217	2288	2359	2429	2500	2570	2640	2710	2779	70
43	18 2849	2918	2987	3055	3124	3192	3260	3328	3396	3464	68
44	18 3532	3599	3666	3733	3800	3867	3934	4001	4067	4133	67
45	18 4199	4265	4331	4397	4463	4528	4593	4658	4723	4788	65

XXXII. $\mathfrak{T}_{\mathfrak{b}}$ for Ogival-headed Projectiles (II = 1.206 kil., or $\omega = 527$ grains).

GENERAL TABLES (French Measures).

X	Y	Y	τ	T.	
~	43 ,	4X ,	*	* *	

St for Ogival-headed Projectiles (continued).

b	0	I	2	3	4	5	6	7	8	9	Diff.
112. 5.	Metres	Metres	Metres	Metres	Metres	Metres	Metres	Metres	Metres	Metres	+
46	18 4853	4918	4983	5048	5112	5176	5240	5304	5368	5432	64
47	5495		5623	5687	5751	5815	5878	5941 6568	6004	6067	64
48	6130	5559 6193	6255	5687 6318	6380	6443	6505	6568	6630	6692	62
49	6754	6816	6878	6940	7001	7063	7124	7185	7246	7308	62
50	7369	7430	749 1	7552	7613	7674	7734	7795	7855	7916	61
51	18 7976	8037	8097	8157	8217	8277	8337	8397	8457	8517	60
52	8576	8636	8695	8755	8814	8874	8933	8992	9051	9110	59
53	9169	9228	9287	9346	9404	9463	9521	9580	9638	9697	59
54	9755	9813	9871	9929	9986	*0044	*0102	*0160	*0217	*0275	58
55	19 0332	0390	0447	0504	0561	0618	0675	0732	0789	0846	57
56	19 0903	0960	1016	1073	1129	1186	1242	1298	1354	1410	56
57	1466	1522	1578	1634	1689	1745	1800	1856	1911	1967	56
58	2022	2077	2132	2187	2242	2297	2352	2407	2462	2517	55
59	2571	2626	2680	2734	2788	2843	2897	2951	3005	3059	54
60	3113	3167	3220	3273	3326	3379	3432	3485	3538	3591	53
61	19 3643	3696	3748	3801	3853	3905	3957	4009	4061	4113	52
62	4164	4216	4267	4318	4369	4420	4470	4521	4571	4622	51
63	4672	4722	4772	4822	4872	4922	4971	5020	5069	5118	50
64	5167	5215	5264	5312	5361	5409	5458	5506	5554	5601	48
65	5648	5696	5743	5791	5838	5885	5932	5979	6026	6072	47
66	19 6119	6165	6211	6257	6303	6349	6395	6440	6486	6531	46
67	6576	6622	6667	6712	6757	6802	6847	6892	6937	6982	45
68	7026	7071	7115	7160	7204	7248	7292	7336	7380	7424	44
69	7468	7512	7555	7599	7643	7687	7731	7775	7819	7863	44
70	7907	7951	7995	8039	8082	8126	8170	8214	8257	8301	44
71	19 8345	8389	8432	8476	8520	8564	8607	8651	8695	8739	44
72	8782	8826	8870	8914	8958	9002	9046	9090	9134	9178	44
73	9222	9266	9309	9353	9397	9441	9485	9529	9573	9617	44
74	9661	9705	9749	9793	9836	9880	9924	9968	*0012	*0056	44
75	20 0100	0144	0188	0232	0275	0319	0363	0407	0451	0495	44
76	20 05 39	0583	0626	0670	0713	0757	0800	0844	0887	0930	43
	0973	1016	1059	1102	1145	0757 1188	1230	1273	1315	1358	43
77	1400	1443	1485	1527	1569	1611	1653	1695	1737	1779	42
79	1820	1862	1904	1946	1987	2028	2069	2110	2151	2192	41
80	2233	2274	2314	2355	2395	2435	2475	2515	2555	2595	40
81	20 2635	2675	2714	2754	2793	2833	2872	2911	2950	2989	39
82	3028	3067	3105	3144	3182	3221	3259	3298	3336	3374	38
83	3412	3450	3487	3525	3563	3601	3638	3676	3713	3750	38
84	3787	3824	3861	3898	3935	3972	4008	4045	4081	4117	37
85	4153	4190	4226	4262	4298	4334	4369	4405	4440	4476	36
86	20 4511	4546	4581	4617	4652	4687	4722	4757	4792	4827	35
87	4861	4896	4930	4965	4999	5033	5007	5101	5135	5169	34
88	5203	5237	5270	5304	5337	5370	540.1	5437	5470	5503	33
	000	1	1	1			-	1			1
-	1	the summer strength of the local division of			the second s						

6	0	1	2	3	4	5	6	7	8	9	Diff.
1. s.	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	+
5	107.4	1102	1129	1156	1181	1206	1230	1252	1274	1296	24
6	1316	1336	1355	1374	1392	1409	1426	1443	1459	1474	18
7	1489	1504	1518	1532	1545	1558	1571	1584	1596	1608	13
8	1619	1630	1641	1652	1662	1672	1682	1692	1701	1711	10
9	1720	1729	1737	1746	1754	1762	1770	1778	1786	1793	8
10	1800	1808	1815	1822	1828	1835	1842	1848	1854	1860	7
11	1 866.6	872·7	878·5	884.1	889.6	895 [•] 1	900.5	906°0	911.4	916·5	5·5
12	921.7	926·6	931·4	936.3	941.1	945 [•] 7	950.3	954°9	959.4	963·8	4·7
13	968.1	972·4	976·7	980.8	984.8	988 [•] 8	992.8	996°7	*000.5	*004·3	4·0
14	2 008.1	011·7	015·3	018.9	022.4	025 [•] 9	029.3	032°7	036.1	039·4	3·5
15	042.6	045·9	049·1	052.2	055.2	05 ⁸ •2	061.2	064°2	067.1	070·0	3·0
16	2 072·9	075.7	078·5	081·3	084.0	086.7	089·3	091.9	094.5	097°1	2.7
17	099·6	102.1	104·6	107·0	109.4	111.8	114·1	116.5	118.8	121°1	2.4
18	123·4	125.6	127·8	130·0	132.1	134.2	136·3	138.4	140.5	142°6	2.1
19	144·6	146.6	148·6	150·6	152.5	154.4	156·3	158.2	160.0	161°9	1.9
20	163·7	165.5	167·3	169·1	170.8	172.6	174·3	176.0	177.7	179°4	1.7
21	2 181.0	182.6	184·2	185.8	187.4	189 ^{.0}	190.6	192°2	193.7	195·2	1.6
22	196.7	198.2	199·6	201.1	202.5	204 ^{.0}	205.4	206°8	208.2	209·6	1.4
23	211.0	212.4	213·8	215.2	216.5	217 ^{.8}	219.1	220°4	221.7	223·0	1.3
24	224.3	225.6	226·8	228.1	229.3	230 ^{.5}	231.7	232°9	234.1	235·3	1.2
25	236.4	237.6	238·7	239.8	240.9	242 ^{.0}	243.1	244°2	245.2	246·3	1.1
26	22 47 [.] 33	48·36	49 [.] 38	50·39	51·38	52·36	53 [.] 34	54·30	55 ^{.25}	56·20	.92
27	57 [.] 13	58·04	58 [.] 95	59·85	60·74	61·62	62 [.] 49	63·36	64 ^{.21}	65 05	.88
28	65 [.] 88	66·71	67 [.] 53	68·33	69·13	69·92	70 [.] 70	71·47	72 ^{.24}	73·00	.79
29	73 [.] 76	74·50	75 [.] 24	75·97	76·69	77·40	78 [.] 11	78·81	79 ^{.50}	80·18	.71
30	80 [.] 85	81·52	82 [.] 19	82·84	83·49	84·14	84 [.] 78	85·41	86 ^{.03}	86·65	.64
31	22 87·26	87 [.] 86	88:45	89.04	89.61	90°16	90.69	91·22	91.73	92·22	·55
32	92·71	93 [.] 18	93:63	94.07	94.50	94°90	95.29	95·67	96.04	96·42	·41
33	96·79	97 [.] 15	97:50	97.85	98.19	98°52	98.85	99·18	99.50	99·81	·34
34	23 00·12	00 [.] 43	00:74	01.05	01.35	01°65	01.95	02 24	02.53	02·82	·30
35	03·11	03 [.] 39	03:67	03.95	04.23	04°51	04.78	05·05	05.31	05·58	·27
36	23 05·84	06.10	06·36	06.62	06 ^{.8} 7	07 [.] 13	07·38	07 ^{.6} 3	07 [.] 87	08·12	·25
37	03·36	08.60	08·84	09.08	09 ^{.31}	09 [.] 54	09·77	10 ^{.00}	10 [.] 23	10·46	·23
38	10·68	10.90	11·12	11.34	11 ^{.56}	11 [.] 78	11·99	12 ^{.20}	12 [.] 41	12·62	·22
39	12·83	13.03	13·23	13.43	13 ^{.63}	13 [.] 83	14·03	14 ^{.23}	14 [.] 42	14·62	·20
40	14·81	15.00	15·19	15.38	15 ^{.57}	15 [.] 75	15·94	16 ^{.12}	16 [.] 30	16·49	·19
41	23 16.67	16.85	17.03	17.21	17.38	17·56	17·73	17:91	18.08	18·25	·18
42	18.42	18.59	18.76	18.93	19.09	19·26	19·42	19:59	19.75	19·92	·17
43	20.08	20.25	20.41	20.57	20.72	20·87	21·02	21:18	21.33	21·49	·16
44	21.64	21.80	21.95	22.10	22.25	22·40	22·55	22:70	22.85	23·00	·15
45	23.14	23.29	23.43	23.58	23.72	23·87	24·01	24:16	24.30	24·44	·14

XXXIII. $\mathfrak{T}_{\mathfrak{b}}$ for Ogival-headed Projectiles $(\Pi = 1.206 \text{ kil. or } \omega = 527 \text{ grains}).$

GENERAL TABLES (French Measures).

XXXIII. $\mathfrak{T}_{\mathfrak{b}}$ for Ogival-headed Projectiles (continued).

ົນ	o	1	2	3	4	5	6	7	8	9	Diff.
<i>m.s.</i>	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	+
46	23 24 58	24.72	24.86	25.00	25.14	25.28	25°42	25°56	25.69	25.83	'14
47	25 96	26.10	26.23	26.37	26.50	26.64	26°77	26°90	27.03	27.17	'13
48	27 30	27.43	27.56	27.69	27.82	27.95	28°07	28°20	28.33	28.46	'13
49	28 58	28.71	28.84	28.97	29.09	29.22	29°34	29°46	29.58	29.71	'13
50	29 8 3	29.95	30.07	30.19	30.31	30.43	30°55	30°67	30.79	30.91	'12
51	23 31.03	31°15	31·27	31·39	31·50	31.62	31.74	31.86	31.97	32.09	°12
52	32.20	32°31	32·42	32·54	32·65	32.77	32.88	32.99	33.10	33.21	°11
53	33.32	33°44	33·55	33·66	33·77	33.88	33.99	34.10	34.20	34.31	°11
54	34.42	34°53	34·63	34·74	34·85	34.95	35.06	35.16	35.27	35.37	°11
55	35.48	35°58	35·69	35·79	35·89	36.00	36.10	36.20	36.30	36.41	°10
56	233 6·508	6.609	6·709	6.809	6·909	7:009	7·109	7·208	7:307	7:405	·100
57	7·503	7.601	7·698	7.796	7·893	7:990	8·086	8·182	8:277	8:373	·097
58	8·468	8.564	8·659	8.754	8·849	8:943	9·036	9·129	9:222	9:315	·094
59	9·408	9.501	9·593	9.685	9·776	9:867	9·958	*0·048	*0:138	*0:228	·091
60	234 0·317	0.407	0·496	0.585	0·673	0:761	0·849	0·937	1:024	1:110	·088
61	234 1.195	1·282	1·368	1.454	1.539	1.624	1.708	1.792	1.876	1.959	·085
62	2.042	2·125	2·207	2.289	2.371	2.453	2.534	2.615	2.695	2.775	·081
63	2.855	2·935	3·014	3.093	3.171	3.249	3.327	3.405	3.482	3.559	·078
64	3.635	3·711	3·786	3.862	3.937	4.012	4.086	4.161	4.235	4.309	·075
65	4.382	4·455	4·528	4.601	4.673	4.745	4.816	4.887	4.958	5.028	·072
66	234 5.098	5.168	5.238	5·308	5:377	5·446	5.515	5·584	5.652	5.720	·069
67	5.788	5.856	5.923	5·990	6:057	6·124	6.190	6·256	6.322	6.388	·067
68	6.454	6.519	6.584	6·649	6:713	6·778	6.842	6·906	6.970	7.034	·065
69	7.098	7.162	7.225	7·289	7:352	7·416	7.479	7·542	7.605	7.668	·063
70	7.730	7.793	7.855	7·917	7:979	8·041	8.103	8·165	8.227	8.289	·062
71	2348.351	8·413	8·474	8.536	8·598	8.660	8.721	8·782	8.843	8.904	·062
72	8.965	9·026	9·086	9.147	9·207	9.268	9.328	9·389	9.449	9.510	·061
73	9.570	9·630	9·690	9.750	9·810	9.870	9.929	9·989	*0.048	*0.108	·060
74	2350.167	0·227	0·286	0.345	0·404	0.463	0.522	0·581	0.639	0.698	·059
75	0.756	0·815	0·873	0.932	0·990	1.048	1.106	1·164	1.222	1.280	·058
76	235 1·337	1°394	1.451	1.508	1·565	1.622	1.679	1 736	1.792	1.849	*057
77	1·905	1°961	2.016	2.072	2·127	2.182	2.237	2 292	2.347	2.402	*055
78	2·456	2°510	2.564	2.618	2·672	2.726	2.779	2 832	2.885	2.938	*054
79	2·991	3°044	3.096	3.148	3·200	3.252	3.304	3 356	3.408	3.459	*052
80	3·510	3°561	3.612	3.662	3·712	3.762	3.812	3 862	3.911	3.960	*050
81	235 4.009	4.058	4.107	4.156	4°204	4 ^{•253}	4°301	4·349	4·397	4.444	°048
82	4.491	4.539	4.586	4.633	4°680	4 ^{•727}	4°773	4·820	4·866	4.912	°047
83	4.958	5.004	5.049	5.094	5°139	5 ^{•184}	5°229	5·274	5·318	5.363	°045
84	5.407	5.451	5.495	5.539	5°582	5 ^{•625}	5°668	5·711	5·754	5.797	°043
85	5.839	5.882	5.924	5.966	6°008	6 ^{•050}	6°092	6·134	6·176	6.218	°042
86 87 88	235 6·259 6·663 7·053	6·300 6·703 7·091	6·341 6·742 7·129	6·382 6·782 7·167	6·422 6·821 7·205	6·463 6·860 7·243	6·503 6·899 7·281	6·544 6·938 7·319	6·584 6·976 7·356	6·624 7·015 7·393	.039 .038

317

CAMBRIDGE

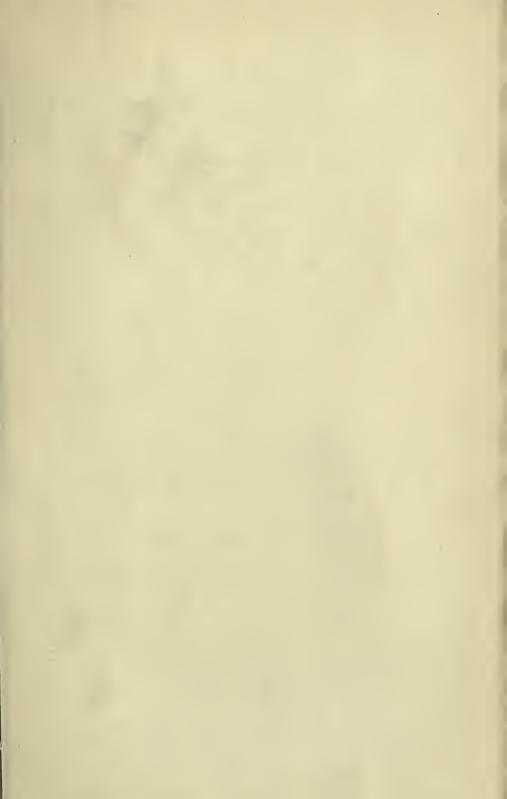
PRINTED BY C. J. CLAY M.A. AND SONS AT THE UNIVERSITY PRESS

CAMBRIDGE UNIVERSITY PRESS.

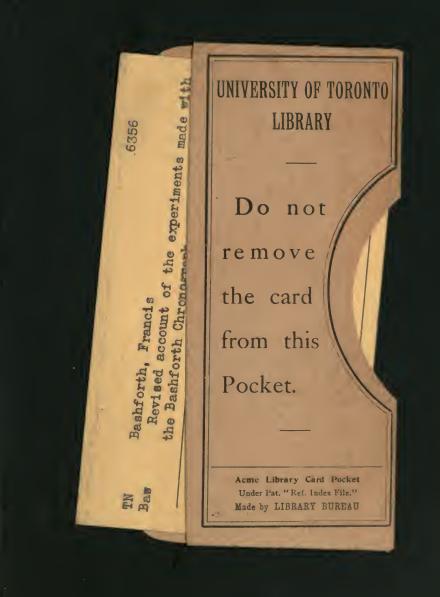
- MATHEMATICAL AND PHYSICAL PAPERS. By Sir W. THOMSON, LL.D., D.C.L., F.R.S., Professor of Natural Philosophy in the University of Glasgow. Collected from different Scientific Periodicals from May, 1841, to the present time. Vol. I. Demy 8vo. 18s. Vol. II. 15s. [Vol. III. In the Press.
- MATHEMATICAL AND PHYSICAL PAPERS, by Sir G. G. STOKES, Sc.D., LL.D., F.R.S., Lucasian Professor of Mathematics in the University of Cambridge. Replinted from the Original Journals and Transactions, with Additional Notes by the Author. Vol. I. Demy 8vo. 15s. Vol. II. 15s. [Vol. III. In the Press.
- CATALOGUE OF SCIENTIFIC PAPERS COMPILED BY THE ROYAL SOCIETY OF LONDON: Vols. 1-6 for the years 1800-1863, Royal 4to. cloth (vol. 1 in half morocco) £4 (net); half morocco £5. 5. (net). Vols. 7-8 for the years 1864-1873, cloth £1. 115. 6d. (net); half morocco £2. 5s. (net). Single volumes cloth 205. or half-morocco 28s. (net). New series for the years 1874-1883 in the press.
- THE COLLECTED MATHEMATICAL PAPERS OF ARTHUR CAYLEY, Sc.D., F.R.S., Sadlerian Professor of Pure Mathematics in the University of Cambridge. Demy 4to. 10 vols. Vol. I. 25s. Vol. II. 25s. [Vol. III. Nearly ready.
- THE SCIENTIFIC PAPERS OF THE LATE PROF. J. CLERK MAXWELL. Edited by W. D. NIVEN, M.A., formerly Fellow of Trinity College. In 2 vols. Royal 4to. £3. 3s. (net).
- A HISTORY OF THE STUDY OF MATHEMATICS AT CAMBRIDGE. By W. W. ROUSE BALL, M.A., Fellow and Lecturer on Mathematics of Trinity College, Cambridge. Crown 8vo. 6s.
- THE THEORY OF DIFFERENTIAL EQUATIONS. Part I. Exact Equations and Pfaff's Problem. By A. R. FORSYTH, M.A., F.R.S., Fellow of Trinity College, Cambridge. [In the Press.
- A HISTORY OF THE THEORY OF ELASTICITY AND OF THE STRENGTH OF MATERIALS, from Galilei to the present time. Vol. I. Galilei to Saint-Venant, 1639–1850. By the late I. TODHUNTER, Sc.D., F.R.S., edited and completed by Professor KARL PEARSON, M.A. Demy 8vo. 25s.

Vol. II. By the same Editor.

[In the Press.


THE ELASTICAL RESEARCHES OF BARRE DE SAINT-VENANT (Extract from Vol. II. of TODHUNTER'S History of the Theory of Elasticity), edited by Professor KARL PEARSON, M.A. Demy 8vo. 9s.

See over


CAMBRIDGE UNIVERSITY PRESS.

- THE ELECTRICAL RESEARCHES OF THE Hon. II. CAVENDISH, F.R.S. Written between 1771 and 1781. Edited from the original MSS. in the possession of the Duke of Devonshire, K.G., by the late J. CLERK MAXWELL, F.R.S. Demy 8vo. 18s.
- A TREATISE ON GEOMETRICAL OPTICS. By R. S. HEATH, M.A., Professor of Mathematics in Mason Science College, Birmingham. Demy 8vo. 12s. 6d.
- AN ELEMENTARY TREATISE ON GEOMETRICAL OPTICS. By R. S. HEATH, M.A. Crown 8vo. 55.
- A TREATISE ON ELEMENTARY DYNAMICS. By S. L. LONEY, M.A., Fellow of Sidney Sussex College. Crown 8vo. 7s. 6d.
- A TREATISE ON NATURAL PHILOSOPHY. By Sir W. THOMSON, LL.D., D.C.L., F.R.S., and P. G. TAIT, M.A., Professor of Natural Philosophy in the University of Edinburgh. Part I. Demy 8vo. 16s. Part II. Demy 8vo. 18s.
- ELEMENTS OF NATURAL PHILOSOPHY. By Professors Sir W. THOMSON and P. G. TAIT. Demy 8vo. 9s.
- AN ELEMENTARY TREATISE ON QUATERNIONS. By P. G. TAIT, M.A. 3rd Edition. Enlarged. Demy 8vo. 18s.
- AN ATTEMPT TO TEST THE THEORIES OF CAPIL-LARY ACTION, by FRANCIS BASHFORTH, B.D., and J. C. ADAMS, M.A., F.R.S. Demy 4to. £1. 15.
- A TREATISE ON THE THEORY OF DETERMINANTS and their applications in Analysis and Geometry, by R. F. SCOTT, M.A., Fellow of St John's College. Demy 8vo. 125.
- IIYDRODYNAMICS, a Treatise on the Mathematical Theory of the Motion of Fluids, by H. LAMB, M.A. Demy 8vo. 12s.
- THE ANALYTICAL THEORY OF HEAT, by JOSEPH FOURIER. Translated, with Notes, by A. FREEMAN, M.A., formerly Fellow of St John's College, Cambridge. Demy 8vo. 12s.
- A TREATISE ON THE GENERAL PRINCIPLES OF CHEMISTRY, by M. M. PATTISON MUIR, M.A. Second Edition. Demy 8vo. 153
- COUNTERPOINT. A Practical Course of Study, by the late Professor Sir G. A. MACFARREN, M.A., Mus. Doc. New Edition, revised. Crown 4to. 7s. 6d.

London: C. J. CLAY AND SONS, CAMERIDGE UNIVERSITY PRESS WAREHOUSE, AVE MARIA LANE.

